"examples/deprecated_api/FP16_Optimizer_simple/closure.py" did not exist on "716719931f298d851c545d98a975bd727c62571e"
batch_analyze.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import time

import cv2
import numpy as np
import torch
from loguru import logger
from PIL import Image

from magic_pdf.config.constants import MODEL_NAME
from magic_pdf.config.exceptions import CUDA_NOT_AVAILABLE
from magic_pdf.data.dataset import Dataset
from magic_pdf.libs.clean_memory import clean_memory
from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton
from magic_pdf.model.pdf_extract_kit import CustomPEKModel
from magic_pdf.model.sub_modules.model_utils import (
icecraft's avatar
icecraft committed
16
    clean_vram, crop_img, get_res_list_from_layout_res)
17
from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import (
icecraft's avatar
icecraft committed
18
19
    get_adjusted_mfdetrec_res, get_ocr_result_list)
from magic_pdf.operators.models import InferenceResult
20
21
22
23
24
25
26
27
28
29
30
31

YOLO_LAYOUT_BASE_BATCH_SIZE = 4
MFD_BASE_BATCH_SIZE = 1
MFR_BASE_BATCH_SIZE = 16


class BatchAnalyze:
    def __init__(self, model: CustomPEKModel, batch_ratio: int):
        self.model = model
        self.batch_ratio = batch_ratio

    def __call__(self, images: list) -> list:
32
        images_layout_res = []
33
34

        layout_start_time = time.time()
35
36
37
38
39
40
41
        if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            for image in images:
                layout_res = self.model.layout_model(image, ignore_catids=[])
                images_layout_res.append(layout_res)
        elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
42
43
44
45
46
47
            layout_images = []
            modified_images = []
            for image_index, image in enumerate(images):
                pil_img = Image.fromarray(image)
                width, height = pil_img.size
                if height > width:
icecraft's avatar
icecraft committed
48
                    input_res = {'poly': [0, 0, width, 0, width, height, 0, height]}
49
50
51
52
53
54
55
56
                    new_image, useful_list = crop_img(
                        input_res, pil_img, crop_paste_x=width // 2, crop_paste_y=0
                    )
                    layout_images.append(new_image)
                    modified_images.append([image_index, useful_list])
                else:
                    layout_images.append(pil_img)

57
            images_layout_res += self.model.layout_model.batch_predict(
58
                layout_images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
59
60
            )

61
62
            for image_index, useful_list in modified_images:
                for res in images_layout_res[image_index]:
icecraft's avatar
icecraft committed
63
                    for i in range(len(res['poly'])):
64
                        if i % 2 == 0:
icecraft's avatar
icecraft committed
65
66
                            res['poly'][i] = (
                                res['poly'][i] - useful_list[0] + useful_list[2]
67
68
                            )
                        else:
icecraft's avatar
icecraft committed
69
70
                            res['poly'][i] = (
                                res['poly'][i] - useful_list[1] + useful_list[3]
71
72
                            )
        logger.info(
icecraft's avatar
icecraft committed
73
            f'layout time: {round(time.time() - layout_start_time, 2)}, image num: {len(images)}'
74
75
        )

76
77
        if self.model.apply_formula:
            # 公式检测
78
            mfd_start_time = time.time()
79
80
81
            images_mfd_res = self.model.mfd_model.batch_predict(
                images, self.batch_ratio * MFD_BASE_BATCH_SIZE
            )
82
            logger.info(
icecraft's avatar
icecraft committed
83
                f'mfd time: {round(time.time() - mfd_start_time, 2)}, image num: {len(images)}'
84
            )
85
86

            # 公式识别
87
            mfr_start_time = time.time()
88
89
90
91
92
93
94
            images_formula_list = self.model.mfr_model.batch_predict(
                images_mfd_res,
                images,
                batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
            )
            for image_index in range(len(images)):
                images_layout_res[image_index] += images_formula_list[image_index]
95
            logger.info(
icecraft's avatar
icecraft committed
96
                f'mfr time: {round(time.time() - mfr_start_time, 2)}, image num: {len(images)}'
97
            )
98
99
100
101

        # 清理显存
        clean_vram(self.model.device, vram_threshold=8)

102
103
104
105
        ocr_time = 0
        ocr_count = 0
        table_time = 0
        table_count = 0
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        # reference: magic_pdf/model/doc_analyze_by_custom_model.py:doc_analyze
        for index in range(len(images)):
            layout_res = images_layout_res[index]
            pil_img = Image.fromarray(images[index])

            ocr_res_list, table_res_list, single_page_mfdetrec_res = (
                get_res_list_from_layout_res(layout_res)
            )
            # ocr识别
            ocr_start = time.time()
            # Process each area that requires OCR processing
            for res in ocr_res_list:
                new_image, useful_list = crop_img(
                    res, pil_img, crop_paste_x=50, crop_paste_y=50
                )
                adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
                    single_page_mfdetrec_res, useful_list
                )

                # OCR recognition
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)

                if self.model.apply_ocr:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res
                    )[0]
                else:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res, rec=False
                    )[0]

                # Integration results
                if ocr_res:
                    ocr_result_list = get_ocr_result_list(ocr_res, useful_list)
                    layout_res.extend(ocr_result_list)
141
142
            ocr_time += time.time() - ocr_start
            ocr_count += len(ocr_res_list)
143
144
145
146
147
148
149
150
151
152
153

            # 表格识别 table recognition
            if self.model.apply_table:
                table_start = time.time()
                for res in table_res_list:
                    new_image, _ = crop_img(res, pil_img)
                    single_table_start_time = time.time()
                    html_code = None
                    if self.model.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
                        with torch.no_grad():
                            table_result = self.model.table_model.predict(
icecraft's avatar
icecraft committed
154
                                new_image, 'html'
155
156
157
158
159
160
161
162
163
164
165
166
                            )
                            if len(table_result) > 0:
                                html_code = table_result[0]
                    elif self.model.table_model_name == MODEL_NAME.TABLE_MASTER:
                        html_code = self.model.table_model.img2html(new_image)
                    elif self.model.table_model_name == MODEL_NAME.RAPID_TABLE:
                        html_code, table_cell_bboxes, elapse = (
                            self.model.table_model.predict(new_image)
                        )
                    run_time = time.time() - single_table_start_time
                    if run_time > self.model.table_max_time:
                        logger.warning(
icecraft's avatar
icecraft committed
167
                            f'table recognition processing exceeds max time {self.model.table_max_time}s'
168
169
170
171
                        )
                    # 判断是否返回正常
                    if html_code:
                        expected_ending = html_code.strip().endswith(
icecraft's avatar
icecraft committed
172
173
                            '</html>'
                        ) or html_code.strip().endswith('</table>')
174
                        if expected_ending:
icecraft's avatar
icecraft committed
175
                            res['html'] = html_code
176
177
                        else:
                            logger.warning(
icecraft's avatar
icecraft committed
178
                                'table recognition processing fails, not found expected HTML table end'
179
180
181
                            )
                    else:
                        logger.warning(
icecraft's avatar
icecraft committed
182
                            'table recognition processing fails, not get html return'
183
                        )
184
185
186
187
                table_time += time.time() - table_start
                table_count += len(table_res_list)

        if self.model.apply_ocr:
icecraft's avatar
icecraft committed
188
            logger.info(f'ocr time: {round(ocr_time, 2)}, image num: {ocr_count}')
189
        else:
icecraft's avatar
icecraft committed
190
            logger.info(f'det time: {round(ocr_time, 2)}, image num: {ocr_count}')
191
        if self.model.apply_table:
icecraft's avatar
icecraft committed
192
            logger.info(f'table time: {round(table_time, 2)}, image num: {table_count}')
193

194
195
        return images_layout_res

196
197
198
199
200
201
202
203
204
205
206
207
208

def doc_batch_analyze(
    dataset: Dataset,
    ocr: bool = False,
    show_log: bool = False,
    start_page_id=0,
    end_page_id=None,
    lang=None,
    layout_model=None,
    formula_enable=None,
    table_enable=None,
    batch_ratio: int | None = None,
) -> InferenceResult:
icecraft's avatar
icecraft committed
209
    """Perform batch analysis on a document dataset.
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    Args:
        dataset (Dataset): The dataset containing document pages to be analyzed.
        ocr (bool, optional): Flag to enable OCR (Optical Character Recognition). Defaults to False.
        show_log (bool, optional): Flag to enable logging. Defaults to False.
        start_page_id (int, optional): The starting page ID for analysis. Defaults to 0.
        end_page_id (int, optional): The ending page ID for analysis. Defaults to None, which means analyze till the last page.
        lang (str, optional): Language for OCR. Defaults to None.
        layout_model (optional): Layout model to be used for analysis. Defaults to None.
        formula_enable (optional): Flag to enable formula detection. Defaults to None.
        table_enable (optional): Flag to enable table detection. Defaults to None.
        batch_ratio (int | None, optional): Ratio for batch processing. Defaults to None, which sets it to 1.

    Raises:
        CUDA_NOT_AVAILABLE: If CUDA is not available, raises an exception as batch analysis is not supported in CPU mode.

    Returns:
        InferenceResult: The result of the batch analysis containing the analyzed data and the dataset.
    """

    if not torch.cuda.is_available():
icecraft's avatar
icecraft committed
231
        raise CUDA_NOT_AVAILABLE('batch analyze not support in CPU mode')
232

icecraft's avatar
icecraft committed
233
    lang = None if lang == '' else lang
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    # TODO: auto detect batch size
    batch_ratio = 1 if batch_ratio is None else batch_ratio
    end_page_id = end_page_id if end_page_id else len(dataset)

    model_manager = ModelSingleton()
    custom_model: CustomPEKModel = model_manager.get_model(
        ocr, show_log, lang, layout_model, formula_enable, table_enable
    )
    batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)

    model_json = []

    # batch analyze
    images = []
    for index in range(len(dataset)):
        if start_page_id <= index <= end_page_id:
            page_data = dataset.get_page(index)
            img_dict = page_data.get_image()
icecraft's avatar
icecraft committed
252
            images.append(img_dict['img'])
253
254
255
256
257
    analyze_result = batch_model(images)

    for index in range(len(dataset)):
        page_data = dataset.get_page(index)
        img_dict = page_data.get_image()
icecraft's avatar
icecraft committed
258
259
        page_width = img_dict['width']
        page_height = img_dict['height']
260
261
262
263
264
        if start_page_id <= index <= end_page_id:
            result = analyze_result.pop(0)
        else:
            result = []

icecraft's avatar
icecraft committed
265
266
        page_info = {'page_no': index, 'height': page_height, 'width': page_width}
        page_dict = {'layout_dets': result, 'page_info': page_info}
267
268
269
        model_json.append(page_dict)

    # TODO: clean memory when gpu memory is not enough
270
    clean_memory_start_time = time.time()
271
    clean_memory()
icecraft's avatar
icecraft committed
272
    logger.info(f'clean memory time: {round(time.time() - clean_memory_start_time, 2)}')
273
274

    return InferenceResult(model_json, dataset)