batch_analyze.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import time

import cv2
import numpy as np
import torch
from loguru import logger
from PIL import Image

from magic_pdf.config.constants import MODEL_NAME
from magic_pdf.config.exceptions import CUDA_NOT_AVAILABLE
from magic_pdf.data.dataset import Dataset
from magic_pdf.libs.clean_memory import clean_memory
from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton
from magic_pdf.model.operators import InferenceResult
from magic_pdf.model.pdf_extract_kit import CustomPEKModel
from magic_pdf.model.sub_modules.model_utils import (
    clean_vram,
    crop_img,
    get_res_list_from_layout_res,
)
from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import (
    get_adjusted_mfdetrec_res,
    get_ocr_result_list,
)

YOLO_LAYOUT_BASE_BATCH_SIZE = 4
MFD_BASE_BATCH_SIZE = 1
MFR_BASE_BATCH_SIZE = 16


class BatchAnalyze:
    def __init__(self, model: CustomPEKModel, batch_ratio: int):
        self.model = model
        self.batch_ratio = batch_ratio

    def __call__(self, images: list) -> list:
37
        images_layout_res = []
38
39

        layout_start_time = time.time()
40
41
42
43
44
45
46
        if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            for image in images:
                layout_res = self.model.layout_model(image, ignore_catids=[])
                images_layout_res.append(layout_res)
        elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
            layout_images = []
            modified_images = []
            for image_index, image in enumerate(images):
                pil_img = Image.fromarray(image)
                width, height = pil_img.size
                if height > width:
                    input_res = {"poly": [0, 0, width, 0, width, height, 0, height]}
                    new_image, useful_list = crop_img(
                        input_res, pil_img, crop_paste_x=width // 2, crop_paste_y=0
                    )
                    layout_images.append(new_image)
                    modified_images.append([image_index, useful_list])
                else:
                    layout_images.append(pil_img)

62
            images_layout_res += self.model.layout_model.batch_predict(
63
                layout_images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
64
65
            )

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
            for image_index, useful_list in modified_images:
                for res in images_layout_res[image_index]:
                    for i in range(len(res["poly"])):
                        if i % 2 == 0:
                            res["poly"][i] = (
                                res["poly"][i] - useful_list[0] + useful_list[2]
                            )
                        else:
                            res["poly"][i] = (
                                res["poly"][i] - useful_list[1] + useful_list[3]
                            )
        logger.info(
            f"layout time: {round(time.time() - layout_start_time, 2)}, image num: {len(images)}"
        )

81
82
        if self.model.apply_formula:
            # 公式检测
83
            mfd_start_time = time.time()
84
85
86
            images_mfd_res = self.model.mfd_model.batch_predict(
                images, self.batch_ratio * MFD_BASE_BATCH_SIZE
            )
87
88
89
            logger.info(
                f"mfd time: {round(time.time() - mfd_start_time, 2)}, image num: {len(images)}"
            )
90
91

            # 公式识别
92
            mfr_start_time = time.time()
93
94
95
96
97
98
99
            images_formula_list = self.model.mfr_model.batch_predict(
                images_mfd_res,
                images,
                batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
            )
            for image_index in range(len(images)):
                images_layout_res[image_index] += images_formula_list[image_index]
100
101
102
            logger.info(
                f"mfr time: {round(time.time() - mfr_start_time, 2)}, image num: {len(images)}"
            )
103
104
105
106

        # 清理显存
        clean_vram(self.model.device, vram_threshold=8)

107
108
109
110
        ocr_time = 0
        ocr_count = 0
        table_time = 0
        table_count = 0
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        # reference: magic_pdf/model/doc_analyze_by_custom_model.py:doc_analyze
        for index in range(len(images)):
            layout_res = images_layout_res[index]
            pil_img = Image.fromarray(images[index])

            ocr_res_list, table_res_list, single_page_mfdetrec_res = (
                get_res_list_from_layout_res(layout_res)
            )
            # ocr识别
            ocr_start = time.time()
            # Process each area that requires OCR processing
            for res in ocr_res_list:
                new_image, useful_list = crop_img(
                    res, pil_img, crop_paste_x=50, crop_paste_y=50
                )
                adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
                    single_page_mfdetrec_res, useful_list
                )

                # OCR recognition
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)

                if self.model.apply_ocr:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res
                    )[0]
                else:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res, rec=False
                    )[0]

                # Integration results
                if ocr_res:
                    ocr_result_list = get_ocr_result_list(ocr_res, useful_list)
                    layout_res.extend(ocr_result_list)
146
147
            ocr_time += time.time() - ocr_start
            ocr_count += len(ocr_res_list)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

            # 表格识别 table recognition
            if self.model.apply_table:
                table_start = time.time()
                for res in table_res_list:
                    new_image, _ = crop_img(res, pil_img)
                    single_table_start_time = time.time()
                    html_code = None
                    if self.model.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
                        with torch.no_grad():
                            table_result = self.model.table_model.predict(
                                new_image, "html"
                            )
                            if len(table_result) > 0:
                                html_code = table_result[0]
                    elif self.model.table_model_name == MODEL_NAME.TABLE_MASTER:
                        html_code = self.model.table_model.img2html(new_image)
                    elif self.model.table_model_name == MODEL_NAME.RAPID_TABLE:
                        html_code, table_cell_bboxes, elapse = (
                            self.model.table_model.predict(new_image)
                        )
                    run_time = time.time() - single_table_start_time
                    if run_time > self.model.table_max_time:
                        logger.warning(
                            f"table recognition processing exceeds max time {self.model.table_max_time}s"
                        )
                    # 判断是否返回正常
                    if html_code:
                        expected_ending = html_code.strip().endswith(
                            "</html>"
                        ) or html_code.strip().endswith("</table>")
                        if expected_ending:
                            res["html"] = html_code
                        else:
                            logger.warning(
                                "table recognition processing fails, not found expected HTML table end"
                            )
                    else:
                        logger.warning(
                            "table recognition processing fails, not get html return"
                        )
189
190
191
192
193
194
195
                table_time += time.time() - table_start
                table_count += len(table_res_list)

        if self.model.apply_ocr:
            logger.info(f"ocr time: {round(ocr_time, 2)}, image num: {ocr_count}")
        if self.model.apply_table:
            logger.info(f"table time: {round(table_time, 2)}, image num: {table_count}")
196

197
198
        return images_layout_res

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

def doc_batch_analyze(
    dataset: Dataset,
    ocr: bool = False,
    show_log: bool = False,
    start_page_id=0,
    end_page_id=None,
    lang=None,
    layout_model=None,
    formula_enable=None,
    table_enable=None,
    batch_ratio: int | None = None,
) -> InferenceResult:
    """
    Perform batch analysis on a document dataset.

    Args:
        dataset (Dataset): The dataset containing document pages to be analyzed.
        ocr (bool, optional): Flag to enable OCR (Optical Character Recognition). Defaults to False.
        show_log (bool, optional): Flag to enable logging. Defaults to False.
        start_page_id (int, optional): The starting page ID for analysis. Defaults to 0.
        end_page_id (int, optional): The ending page ID for analysis. Defaults to None, which means analyze till the last page.
        lang (str, optional): Language for OCR. Defaults to None.
        layout_model (optional): Layout model to be used for analysis. Defaults to None.
        formula_enable (optional): Flag to enable formula detection. Defaults to None.
        table_enable (optional): Flag to enable table detection. Defaults to None.
        batch_ratio (int | None, optional): Ratio for batch processing. Defaults to None, which sets it to 1.

    Raises:
        CUDA_NOT_AVAILABLE: If CUDA is not available, raises an exception as batch analysis is not supported in CPU mode.

    Returns:
        InferenceResult: The result of the batch analysis containing the analyzed data and the dataset.
    """

    if not torch.cuda.is_available():
        raise CUDA_NOT_AVAILABLE("batch analyze not support in CPU mode")

    lang = None if lang == "" else lang
    # TODO: auto detect batch size
    batch_ratio = 1 if batch_ratio is None else batch_ratio
    end_page_id = end_page_id if end_page_id else len(dataset)

    model_manager = ModelSingleton()
    custom_model: CustomPEKModel = model_manager.get_model(
        ocr, show_log, lang, layout_model, formula_enable, table_enable
    )
    batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)

    model_json = []

    # batch analyze
    images = []
    for index in range(len(dataset)):
        if start_page_id <= index <= end_page_id:
            page_data = dataset.get_page(index)
            img_dict = page_data.get_image()
            images.append(img_dict["img"])
    analyze_result = batch_model(images)

    for index in range(len(dataset)):
        page_data = dataset.get_page(index)
        img_dict = page_data.get_image()
        page_width = img_dict["width"]
        page_height = img_dict["height"]
        if start_page_id <= index <= end_page_id:
            result = analyze_result.pop(0)
        else:
            result = []

        page_info = {"page_no": index, "height": page_height, "width": page_width}
        page_dict = {"layout_dets": result, "page_info": page_info}
        model_json.append(page_dict)

    # TODO: clean memory when gpu memory is not enough
274
    clean_memory_start_time = time.time()
275
    clean_memory()
276
    logger.info(f"clean memory time: {round(time.time() - clean_memory_start_time, 2)}")
277
278

    return InferenceResult(model_json, dataset)