"vscode:/vscode.git/clone" did not exist on "84d02f77ced6843dfe7fde525315cb1089d32c19"
batch_analyze.py 9.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import time

import cv2
import numpy as np
import torch
from loguru import logger
from PIL import Image

from magic_pdf.config.constants import MODEL_NAME
from magic_pdf.config.exceptions import CUDA_NOT_AVAILABLE
from magic_pdf.data.dataset import Dataset
from magic_pdf.libs.clean_memory import clean_memory
from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton
from magic_pdf.model.operators import InferenceResult
from magic_pdf.model.pdf_extract_kit import CustomPEKModel
from magic_pdf.model.sub_modules.model_utils import (
    clean_vram,
    crop_img,
    get_res_list_from_layout_res,
)
from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import (
    get_adjusted_mfdetrec_res,
    get_ocr_result_list,
)

YOLO_LAYOUT_BASE_BATCH_SIZE = 4
MFD_BASE_BATCH_SIZE = 1
MFR_BASE_BATCH_SIZE = 16


class BatchAnalyze:
    def __init__(self, model: CustomPEKModel, batch_ratio: int):
        self.model = model
        self.batch_ratio = batch_ratio

    def __call__(self, images: list) -> list:
37
        images_layout_res = []
38
39
40
41
42
43
44
        if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            for image in images:
                layout_res = self.model.layout_model(image, ignore_catids=[])
                images_layout_res.append(layout_res)
        elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
45
            images_layout_res += self.model.layout_model.batch_predict(
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
                images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
            )

        if self.model.apply_formula:
            # 公式检测
            images_mfd_res = self.model.mfd_model.batch_predict(
                images, self.batch_ratio * MFD_BASE_BATCH_SIZE
            )

            # 公式识别
            images_formula_list = self.model.mfr_model.batch_predict(
                images_mfd_res,
                images,
                batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
            )
            for image_index in range(len(images)):
                images_layout_res[image_index] += images_formula_list[image_index]

        # 清理显存
        clean_vram(self.model.device, vram_threshold=8)

        # reference: magic_pdf/model/doc_analyze_by_custom_model.py:doc_analyze
        for index in range(len(images)):
            layout_res = images_layout_res[index]
            pil_img = Image.fromarray(images[index])

            ocr_res_list, table_res_list, single_page_mfdetrec_res = (
                get_res_list_from_layout_res(layout_res)
            )
            # ocr识别
            ocr_start = time.time()
            # Process each area that requires OCR processing
            for res in ocr_res_list:
                new_image, useful_list = crop_img(
                    res, pil_img, crop_paste_x=50, crop_paste_y=50
                )
                adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
                    single_page_mfdetrec_res, useful_list
                )

                # OCR recognition
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)

                if self.model.apply_ocr:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res
                    )[0]
                else:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res, rec=False
                    )[0]

                # Integration results
                if ocr_res:
                    ocr_result_list = get_ocr_result_list(ocr_res, useful_list)
                    layout_res.extend(ocr_result_list)

            ocr_cost = round(time.time() - ocr_start, 2)
            if self.model.apply_ocr:
                logger.info(f"ocr time: {ocr_cost}")
            else:
                logger.info(f"det time: {ocr_cost}")

            # 表格识别 table recognition
            if self.model.apply_table:
                table_start = time.time()
                for res in table_res_list:
                    new_image, _ = crop_img(res, pil_img)
                    single_table_start_time = time.time()
                    html_code = None
                    if self.model.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
                        with torch.no_grad():
                            table_result = self.model.table_model.predict(
                                new_image, "html"
                            )
                            if len(table_result) > 0:
                                html_code = table_result[0]
                    elif self.model.table_model_name == MODEL_NAME.TABLE_MASTER:
                        html_code = self.model.table_model.img2html(new_image)
                    elif self.model.table_model_name == MODEL_NAME.RAPID_TABLE:
                        html_code, table_cell_bboxes, elapse = (
                            self.model.table_model.predict(new_image)
                        )
                    run_time = time.time() - single_table_start_time
                    if run_time > self.model.table_max_time:
                        logger.warning(
                            f"table recognition processing exceeds max time {self.model.table_max_time}s"
                        )
                    # 判断是否返回正常
                    if html_code:
                        expected_ending = html_code.strip().endswith(
                            "</html>"
                        ) or html_code.strip().endswith("</table>")
                        if expected_ending:
                            res["html"] = html_code
                        else:
                            logger.warning(
                                "table recognition processing fails, not found expected HTML table end"
                            )
                    else:
                        logger.warning(
                            "table recognition processing fails, not get html return"
                        )
                logger.info(f"table time: {round(time.time() - table_start, 2)}")

151
152
        return images_layout_res

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

def doc_batch_analyze(
    dataset: Dataset,
    ocr: bool = False,
    show_log: bool = False,
    start_page_id=0,
    end_page_id=None,
    lang=None,
    layout_model=None,
    formula_enable=None,
    table_enable=None,
    batch_ratio: int | None = None,
) -> InferenceResult:
    """
    Perform batch analysis on a document dataset.

    Args:
        dataset (Dataset): The dataset containing document pages to be analyzed.
        ocr (bool, optional): Flag to enable OCR (Optical Character Recognition). Defaults to False.
        show_log (bool, optional): Flag to enable logging. Defaults to False.
        start_page_id (int, optional): The starting page ID for analysis. Defaults to 0.
        end_page_id (int, optional): The ending page ID for analysis. Defaults to None, which means analyze till the last page.
        lang (str, optional): Language for OCR. Defaults to None.
        layout_model (optional): Layout model to be used for analysis. Defaults to None.
        formula_enable (optional): Flag to enable formula detection. Defaults to None.
        table_enable (optional): Flag to enable table detection. Defaults to None.
        batch_ratio (int | None, optional): Ratio for batch processing. Defaults to None, which sets it to 1.

    Raises:
        CUDA_NOT_AVAILABLE: If CUDA is not available, raises an exception as batch analysis is not supported in CPU mode.

    Returns:
        InferenceResult: The result of the batch analysis containing the analyzed data and the dataset.
    """

    if not torch.cuda.is_available():
        raise CUDA_NOT_AVAILABLE("batch analyze not support in CPU mode")

    lang = None if lang == "" else lang
    # TODO: auto detect batch size
    batch_ratio = 1 if batch_ratio is None else batch_ratio
    end_page_id = end_page_id if end_page_id else len(dataset)

    model_manager = ModelSingleton()
    custom_model: CustomPEKModel = model_manager.get_model(
        ocr, show_log, lang, layout_model, formula_enable, table_enable
    )
    batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)

    model_json = []

    # batch analyze
    images = []
    for index in range(len(dataset)):
        if start_page_id <= index <= end_page_id:
            page_data = dataset.get_page(index)
            img_dict = page_data.get_image()
            images.append(img_dict["img"])
    analyze_result = batch_model(images)

    for index in range(len(dataset)):
        page_data = dataset.get_page(index)
        img_dict = page_data.get_image()
        page_width = img_dict["width"]
        page_height = img_dict["height"]
        if start_page_id <= index <= end_page_id:
            result = analyze_result.pop(0)
        else:
            result = []

        page_info = {"page_no": index, "height": page_height, "width": page_width}
        page_dict = {"layout_dets": result, "page_info": page_info}
        model_json.append(page_dict)

    # TODO: clean memory when gpu memory is not enough
    clean_memory()

    return InferenceResult(model_json, dataset)