README.md 58.8 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
13

14
15
16
17
[![PyPI version](https://img.shields.io/pypi/v/mineru)](https://pypi.org/project/mineru/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mineru)](https://pypi.org/project/mineru/)
[![Downloads](https://static.pepy.tech/badge/mineru)](https://pepy.tech/project/mineru)
[![Downloads](https://static.pepy.tech/badge/mineru/month)](https://pepy.tech/project/mineru)
18

19
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
20
21
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
22

23
[![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
myhloli's avatar
myhloli committed
24
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
25
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839)
26

myhloli's avatar
myhloli committed
27

xuchao's avatar
xuchao committed
28
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
29

xuchao's avatar
xuchao committed
30
<!-- language -->
31

xuchao's avatar
xuchao committed
32
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
33

xuchao's avatar
xuchao committed
34
<!-- hot link -->
35

徐超's avatar
徐超 committed
36
<p align="center">
xuchao's avatar
xuchao committed
37
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
38
39
<br>
<br>
40
<a href="https://mineru.net/client?source=github">
41
Easier to use: Just grab MinerU Desktop. No coding, no login, just a simple interface and smooth interactions. Enjoy it without any fuss!</a>🚀🚀🚀
42

徐超's avatar
徐超 committed
43
44
</p>

xuchao's avatar
xuchao committed
45
<!-- join us -->
46

徐超's avatar
徐超 committed
47
<p align="center">
48
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="http://mineru.space/s/V85Yl" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
49
</p>
赵小蒙's avatar
赵小蒙 committed
50

xuchao's avatar
xuchao committed
51
</div>
赵小蒙's avatar
赵小蒙 committed
52

xuchao's avatar
xuchao committed
53
# Changelog
54
- 2025/06/15 2.0.3 released
55
56
  - Fixed a configuration file key-value update error that occurred when downloading model type was set to `all`
  - Fixed an issue where formula and table feature toggle parameters in the command line interface could not be effectively disabled
57
  - Fixed compatibility issues with sglang version 0.4.7 in the `sglang-engine` mode.
58
  - Updated Dockerfile and installation documentation for deploying the full version of MinerU in sglang environment
59
60
61
62
63
64
65
66
67
68
69
70
71
- 2025/06/13 2.0.0 Released
  - MinerU 2.0 represents a comprehensive reconstruction and upgrade from architecture to functionality, delivering a more streamlined design, enhanced performance, and more flexible user experience.
    - **New Architecture**: MinerU 2.0 has been deeply restructured in code organization and interaction methods, significantly improving system usability, maintainability, and extensibility.
      - **Removal of Third-party Dependency Limitations**: Completely eliminated the dependency on `pymupdf`, moving the project toward a more open and compliant open-source direction.
      - **Ready-to-use, Easy Configuration**: No need to manually edit JSON configuration files; most parameters can now be set directly via command line or API.
      - **Automatic Model Management**: Added automatic model download and update mechanisms, allowing users to complete model deployment without manual intervention.
      - **Offline Deployment Friendly**: Provides built-in model download commands, supporting deployment requirements in completely offline environments.
      - **Streamlined Code Structure**: Removed thousands of lines of redundant code, simplified class inheritance logic, significantly improving code readability and development efficiency.
      - **Unified Intermediate Format Output**: Adopted standardized `middle_json` format, compatible with most secondary development scenarios based on this format, ensuring seamless ecosystem business migration.
    - **New Model**: MinerU 2.0 integrates our latest small-parameter, high-performance multimodal document parsing model, achieving end-to-end high-speed, high-precision document understanding.
      - **Small Model, Big Capabilities**: With parameters under 1B, yet surpassing traditional 72B-level vision-language models (VLMs) in parsing accuracy.
      - **Multiple Functions in One**: A single model covers multilingual recognition, handwriting recognition, layout analysis, table parsing, formula recognition, reading order sorting, and other core tasks.
      - **Ultimate Inference Speed**: Achieves peak throughput exceeding 10,000 tokens/s through `sglang` acceleration on a single NVIDIA 4090 card, easily handling large-scale document processing requirements.
72
      - **Online Experience**: You can experience this model online on our Hugging Face demo: [![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)
73
74
75
    - **Incompatible Changes Notice**: To improve overall architectural rationality and long-term maintainability, this version contains some incompatible changes:
      - Python package name changed from `magic-pdf` to `mineru`, and the command-line tool changed from `magic-pdf` to `mineru`. Please update your scripts and command calls accordingly.
      - For modular system design and ecosystem consistency considerations, MinerU 2.0 no longer includes the LibreOffice document conversion module. If you need to process Office documents, we recommend converting them to PDF format through an independently deployed LibreOffice service before proceeding with subsequent parsing operations.
76
77

<details>
78
79
80
81
82
83
84
85
86
  <summary>History Log</summary>
  <details>
  <summary>2025/05/24 Release 1.3.12</summary>
  <ul>
      <li>Added support for PPOCRv5 models, updated <code>ch_server</code> model to <code>PP-OCRv5_rec_server</code>, and <code>ch_lite</code> model to <code>PP-OCRv5_rec_mobile</code> (model update required)
        <ul>
          <li>In testing, we found that PPOCRv5(server) has some improvement for handwritten documents, but has slightly lower accuracy than v4_server_doc for other document types, so the default ch model remains unchanged as <code>PP-OCRv4_server_rec_doc</code>.</li>
          <li>Since PPOCRv5 has enhanced recognition capabilities for handwriting and special characters, you can manually choose the PPOCRv5 model for Japanese-Traditional Chinese mixed scenarios and handwritten documents</li>
          <li>You can select the appropriate model through the lang parameter <code>lang='ch_server'</code> (Python API) or <code>--lang ch_server</code> (command line):
xuchao's avatar
xuchao committed
87
            <ul>
88
89
90
91
92
              <li><code>ch</code>: <code>PP-OCRv4_server_rec_doc</code> (default) (Chinese/English/Japanese/Traditional Chinese mixed/15K dictionary)</li>
              <li><code>ch_server</code>: <code>PP-OCRv5_rec_server</code> (Chinese/English/Japanese/Traditional Chinese mixed + handwriting/18K dictionary)</li>
              <li><code>ch_lite</code>: <code>PP-OCRv5_rec_mobile</code> (Chinese/English/Japanese/Traditional Chinese mixed + handwriting/18K dictionary)</li>
              <li><code>ch_server_v4</code>: <code>PP-OCRv4_rec_server</code> (Chinese/English mixed/6K dictionary)</li>
              <li><code>ch_lite_v4</code>: <code>PP-OCRv4_rec_mobile</code> (Chinese/English mixed/6K dictionary)</li>
xuchao's avatar
xuchao committed
93
            </ul>
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
          </li>
        </ul>
      </li>
      <li>Added support for handwritten documents through optimized layout recognition of handwritten text areas
        <ul>
          <li>This feature is supported by default, no additional configuration required</li>
          <li>You can refer to the instructions above to manually select the PPOCRv5 model for better handwritten document parsing results</li>
        </ul>
      </li>
      <li>The <code>huggingface</code> and <code>modelscope</code> demos have been updated to versions that support handwriting recognition and PPOCRv5 models, which you can experience online</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/29 Release 1.3.10</summary>
  <ul>
      <li>Added support for custom formula delimiters, which can be configured by modifying the <code>latex-delimiter-config</code> section in the <code>magic-pdf.json</code> file in your user directory.</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/27 Release 1.3.9</summary>
  <ul>
      <li>Optimized formula parsing functionality, improved formula rendering success rate</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/23 Release 1.3.8</summary>
  <ul>
      <li>The default <code>ocr</code> model (<code>ch</code>) has been updated to <code>PP-OCRv4_server_rec_doc</code> (model update required)
        <ul>
          <li><code>PP-OCRv4_server_rec_doc</code> is trained on a mixture of more Chinese document data and PP-OCR training data based on <code>PP-OCRv4_server_rec</code>, adding recognition capabilities for some traditional Chinese characters, Japanese, and special characters. It can recognize over 15,000 characters and improves both document-specific and general text recognition abilities.</li>
          <li><a href="https://paddlepaddle.github.io/PaddleX/latest/module_usage/tutorials/ocr_modules/text_recognition.html#_3">Performance comparison of PP-OCRv4_server_rec_doc/PP-OCRv4_server_rec/PP-OCRv4_mobile_rec</a></li>
          <li>After verification, the <code>PP-OCRv4_server_rec_doc</code> model shows significant accuracy improvements in Chinese/English/Japanese/Traditional Chinese in both single language and mixed language scenarios, with comparable speed to <code>PP-OCRv4_server_rec</code>, making it suitable for most use cases.</li>
          <li>In some pure English scenarios, <code>PP-OCRv4_server_rec_doc</code> may have word adhesion issues, while <code>PP-OCRv4_server_rec</code> performs better in these cases. Therefore, we've kept the <code>PP-OCRv4_server_rec</code> model, which users can access by adding the parameter <code>lang='ch_server'</code> (Python API) or <code>--lang ch_server</code> (command line).</li>
        </ul>
      </li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/22 Release 1.3.7</summary>
  <ul>
      <li>Fixed the issue where the lang parameter was ineffective during table parsing model initialization</li>
      <li>Fixed the significant speed reduction of OCR and table parsing in <code>cpu</code> mode</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/16 Release 1.3.4</summary>
  <ul>
      <li>Slightly improved OCR-det speed by removing some unnecessary blocks</li>
      <li>Fixed page-internal sorting errors caused by footnotes in certain cases</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/12 Release 1.3.2</summary>
  <ul>
      <li>Fixed dependency version incompatibility issues when installing on Windows with Python 3.13</li>
      <li>Optimized memory usage during batch inference</li>
      <li>Improved parsing of tables rotated 90 degrees</li>
      <li>Enhanced parsing of oversized tables in financial report samples</li>
      <li>Fixed the occasional word adhesion issue in English text areas when OCR language is not specified (model update required)</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/08 Release 1.3.1</summary>
  <ul>
      <li>Fixed several compatibility issues
        <ul>
          <li>Added support for Python 3.13</li>
          <li>Made final adaptations for outdated Linux systems (such as CentOS 7) with no guarantee of continued support in future versions, <a href="https://github.com/opendatalab/MinerU/issues/1004">installation instructions</a></li>
        </ul>
      </li>
  </ul>
  </details>
  
  <details>
  <summary>2025/04/03 Release 1.3.0</summary>
  <ul>
      <li>Installation and compatibility optimizations
        <ul>
          <li>Resolved compatibility issues caused by <code>detectron2</code> by removing <code>layoutlmv3</code> usage in layout</li>
          <li>Extended torch version compatibility to 2.2~2.6 (excluding 2.5)</li>
          <li>Added CUDA compatibility for versions 11.8/12.4/12.6/12.8 (CUDA version determined by torch), solving compatibility issues for users with 50-series and H-series GPUs</li>
          <li>Extended Python compatibility to versions 3.10~3.12, fixing the issue of automatic downgrade to version 0.6.1 when installing in non-3.10 environments</li>
          <li>Optimized offline deployment process, eliminating the need to download any model files after successful deployment</li>
        </ul>
      </li>
      <li>Performance optimizations
        <ul>
          <li>Enhanced parsing speed for batches of small files by supporting batch processing of multiple PDF files (<a href="demo/batch_demo.py">script example</a>), with formula parsing speed improved by up to 1400% and overall parsing speed improved by up to 500% compared to version 1.0.1</li>
          <li>Reduced memory usage and improved parsing speed by optimizing MFR model loading and usage (requires re-running the <a href="docs/how_to_download_models_zh_cn.md">model download process</a> to get incremental updates to model files)</li>
          <li>Optimized GPU memory usage, requiring only 6GB minimum to run this project</li>
          <li>Improved running speed on MPS devices</li>
        </ul>
      </li>
      <li>Parsing effect optimizations
        <ul>
          <li>Updated MFR model to <code>unimernet(2503)</code>, fixing line break loss issues in multi-line formulas</li>
        </ul>
      </li>
      <li>Usability optimizations
        <ul>
          <li>Completely replaced the <code>paddle</code> framework and <code>paddleocr</code> in the project by using <code>paddleocr2torch</code>, resolving conflicts between <code>paddle</code> and <code>torch</code>, as well as thread safety issues caused by the <code>paddle</code> framework</li>
          <li>Added real-time progress bar display during parsing, allowing precise tracking of parsing progress and making the waiting process more bearable</li>
        </ul>
      </li>
  </ul>
  </details>
  <details>
  <summary>2025/03/03 1.2.1 released</summary>
  <ul>
    <li>Fixed the impact on punctuation marks during full-width to half-width conversion of letters and numbers</li>
    <li>Fixed caption matching inaccuracies in certain scenarios</li>
    <li>Fixed formula span loss issues in certain scenarios</li>
  </ul>
  </details>
  
  <details>
  <summary>2025/02/24 1.2.0 released</summary>
  <p>This version includes several fixes and improvements to enhance parsing efficiency and accuracy:</p>
  <ul>
    <li><strong>Performance Optimization</strong>
      <ul>
        <li>Increased classification speed for PDF documents in auto mode.</li>
      </ul>
    </li>
    <li><strong>Parsing Optimization</strong>
      <ul>
        <li>Improved parsing logic for documents containing watermarks, significantly enhancing the parsing results for such documents.</li>
        <li>Enhanced the matching logic for multiple images/tables and captions within a single page, improving the accuracy of image-text matching in complex layouts.</li>
      </ul>
    </li>
    <li><strong>Bug Fixes</strong>
      <ul>
        <li>Fixed an issue where image/table spans were incorrectly filled into text blocks under certain conditions.</li>
        <li>Resolved an issue where title blocks were empty in some cases.</li>
xuchao's avatar
xuchao committed
235
236
      </ul>
    </li>
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
  </ul>
  </details>
  
  <details>
  <summary>2025/01/22 1.1.0 released</summary>
  <p>In this version we have focused on improving parsing accuracy and efficiency:</p>
  <ul>
    <li><strong>Model capability upgrade</strong> (requires re-executing the <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">model download process</a> to obtain incremental updates of model files)
      <ul>
        <li>The layout recognition model has been upgraded to the latest <code>doclayout_yolo(2501)</code> model, improving layout recognition accuracy.</li>
        <li>The formula parsing model has been upgraded to the latest <code>unimernet(2501)</code> model, improving formula recognition accuracy.</li>
      </ul>
    </li>
    <li><strong>Performance optimization</strong>
      <ul>
        <li>On devices that meet certain configuration requirements (16GB+ VRAM), by optimizing resource usage and restructuring the processing pipeline, overall parsing speed has been increased by more than 50%.</li>
      </ul>
    </li>
    <li><strong>Parsing effect optimization</strong>
      <ul>
        <li>Added a new heading classification feature (testing version, enabled by default) to the online demo (<a href="https://mineru.net/OpenSourceTools/Extractor">mineru.net</a>/<a href="https://huggingface.co/spaces/opendatalab/MinerU">huggingface</a>/<a href="https://www.modelscope.cn/studios/OpenDataLab/MinerU">modelscope</a>), which supports hierarchical classification of headings, thereby enhancing document structuring.</li>
      </ul>
    </li>
  </ul>
  </details>
  
  <details>
  <summary>2025/01/10 1.0.1 released</summary>
  <p>This is our first official release, where we have introduced a completely new API interface and enhanced compatibility through extensive refactoring, as well as a brand new automatic language identification feature:</p>
  <ul>
    <li><strong>New API Interface</strong>
      <ul>
        <li>For the data-side API, we have introduced the Dataset class, designed to provide a robust and flexible data processing framework. This framework currently supports a variety of document formats, including images (.jpg and .png), PDFs, Word documents (.doc and .docx), and PowerPoint presentations (.ppt and .pptx). It ensures effective support for data processing tasks ranging from simple to complex.</li>
        <li>For the user-side API, we have meticulously designed the MinerU processing workflow as a series of composable Stages. Each Stage represents a specific processing step, allowing users to define new Stages according to their needs and creatively combine these stages to customize their data processing workflows.</li>
      </ul>
    </li>
    <li><strong>Enhanced Compatibility</strong>
      <ul>
        <li>By optimizing the dependency environment and configuration items, we ensure stable and efficient operation on ARM architecture Linux systems.</li>
        <li>We have deeply integrated with Huawei Ascend NPU acceleration, providing autonomous and controllable high-performance computing capabilities. This supports the localization and development of AI application platforms in China. <a href="https://github.com/opendatalab/MinerU/blob/master/docs/README_Ascend_NPU_Acceleration_zh_CN.md">Ascend NPU Acceleration</a></li>
      </ul>
    </li>
    <li><strong>Automatic Language Identification</strong>
      <ul>
        <li>By introducing a new language recognition model, setting the <code>lang</code> configuration to <code>auto</code> during document parsing will automatically select the appropriate OCR language model, improving the accuracy of scanned document parsing.</li>
      </ul>
    </li>
  </ul>
  </details>
  
  <details>
  <summary>2024/11/22 0.10.0 released</summary>
  <p>Introducing hybrid OCR text extraction capabilities:</p>
  <ul>
    <li>Significantly improved parsing performance in complex text distribution scenarios such as dense formulas, irregular span regions, and text represented by images.</li>
    <li>Combines the dual advantages of accurate content extraction and faster speed in text mode, and more precise span/line region recognition in OCR mode.</li>
  </ul>
  </details>
  
  <details>
  <summary>2024/11/15 0.9.3 released</summary>
  <p>Integrated <a href="https://github.com/RapidAI/RapidTable">RapidTable</a> for table recognition, improving single-table parsing speed by more than 10 times, with higher accuracy and lower GPU memory usage.</p>
  </details>
  
  <details>
  <summary>2024/11/06 0.9.2 released</summary>
  <p>Integrated the <a href="https://huggingface.co/U4R/StructTable-InternVL2-1B">StructTable-InternVL2-1B</a> model for table recognition functionality.</p>
  </details>
  
  <details>
  <summary>2024/10/31 0.9.0 released</summary>
  <p>This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:</p>
  <ul>
    <li>Refactored the sorting module code to use <a href="https://github.com/ppaanngggg/layoutreader">layoutreader</a> for reading order sorting, ensuring high accuracy in various layouts.</li>
    <li>Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.</li>
    <li>Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.</li>
    <li>Refactored the matching logic for figures, tables, and descriptive text, greatly enhancing the accuracy of matching captions and footnotes to figures and tables, and reducing the loss rate of descriptive text to near zero.</li>
    <li>Added multi-language support for OCR, supporting detection and recognition of 84 languages. For the list of supported languages, see <a href="https://paddlepaddle.github.io/PaddleOCR/latest/en/ppocr/blog/multi_languages.html#5-support-languages-and-abbreviations">OCR Language Support List</a>.</li>
    <li>Added memory recycling logic and other memory optimization measures, significantly reducing memory usage. The memory requirement for enabling all acceleration features except table acceleration (layout/formula/OCR) has been reduced from 16GB to 8GB, and the memory requirement for enabling all acceleration features has been reduced from 24GB to 10GB.</li>
    <li>Optimized configuration file feature switches, adding an independent formula detection switch to significantly improve speed and parsing results when formula detection is not needed.</li>
    <li>Integrated <a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit 1.0</a>:
      <ul>
        <li>Added the self-developed <code>doclayout_yolo</code> model, which speeds up processing by more than 10 times compared to the original solution while maintaining similar parsing effects, and can be freely switched with <code>layoutlmv3</code> via the configuration file.</li>
        <li>Upgraded formula parsing to <code>unimernet 0.2.1</code>, improving formula parsing accuracy while significantly reducing memory usage.</li>
        <li>Due to the repository change for <code>PDF-Extract-Kit 1.0</code>, you need to re-download the model. Please refer to <a href="https://github.com/opendatalab/MinerU/blob/master/docs/how_to_download_models_en.md">How to Download Models</a> for detailed steps.</li>
      </ul>
    </li>
  </ul>
  </details>
  
  <details>
  <summary>2024/09/27 Version 0.8.1 released</summary>
  <p>Fixed some bugs, and providing a <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web_demo/README.md">localized deployment version</a> of the <a href="https://opendatalab.com/OpenSourceTools/Extractor/PDF/">online demo</a> and the <a href="https://github.com/opendatalab/MinerU/blob/master/projects/web/README.md">front-end interface</a>.</p>
  </details>
  
  <details>
  <summary>2024/09/09 Version 0.8.0 released</summary>
  <p>Supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.</p>
  </details>
  
  <details>
  <summary>2024/08/30 Version 0.7.1 released</summary>
  <p>Add paddle tablemaster table recognition option</p>
  </details>
  
  <details>
  <summary>2024/08/09 Version 0.7.0b1 released</summary>
  <p>Simplified installation process, added table recognition functionality</p>
  </details>
  
  <details>
  <summary>2024/08/01 Version 0.6.2b1 released</summary>
  <p>Optimized dependency conflict issues and installation documentation</p>
  </details>
  
  <details>
  <summary>2024/07/05 Initial open-source release</summary>
  </details>
355
356
357
</details>

<!-- TABLE OF CONTENT -->
358
  
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Local Deployment</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
xuchao's avatar
xuchao committed
387
388
389
</details>

# MinerU
390

xuchao's avatar
xuchao committed
391
## Project Introduction
392

xuchao's avatar
xuchao committed
393
394
395
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
396

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
397
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
398

myhloli's avatar
myhloli committed
399
400
401
402
403
404
405
## Key Features

- Remove headers, footers, footnotes, page numbers, etc., to ensure semantic coherence.
- Output text in human-readable order, suitable for single-column, multi-column, and complex layouts.
- Preserve the structure of the original document, including headings, paragraphs, lists, etc.
- Extract images, image descriptions, tables, table titles, and footnotes.
- Automatically recognize and convert formulas in the document to LaTeX format.
406
- Automatically recognize and convert tables in the document to HTML format.
myhloli's avatar
myhloli committed
407
408
409
410
- Automatically detect scanned PDFs and garbled PDFs and enable OCR functionality.
- OCR supports detection and recognition of 84 languages.
- Supports multiple output formats, such as multimodal and NLP Markdown, JSON sorted by reading order, and rich intermediate formats.
- Supports various visualization results, including layout visualization and span visualization, for efficient confirmation of output quality.
411
- Supports running in a pure CPU environment, and also supports GPU(CUDA)/NPU(CANN)/MPS acceleration
myhloli's avatar
myhloli committed
412
413
- Compatible with Windows, Linux, and Mac platforms.

xuchao's avatar
xuchao committed
414
415
## Quick Start

myhloli's avatar
myhloli committed
416
417
418
If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
419

420
421
422
- [Online Demo](#online-demo)
- [Local Deployment](#local-deployment)

myhloli's avatar
myhloli committed
423
424
425
426
427
428
429
430
431
432

> [!WARNING]
> **Pre-installation Notice—Hardware and Software Environment Support**
>
> To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.
>
> By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.
>
> In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

433
<table border="1">
myhloli's avatar
myhloli committed
434
    <tr>
435
436
437
438
        <td>Parsing Backend</td>
        <td>pipeline</td>
        <td>vlm-transformers</td>
        <td>vlm-sgslang</td>
myhloli's avatar
myhloli committed
439
440
    </tr>
    <tr>
441
442
443
444
        <td>Operating System</td>
        <td>windows/linux/mac</td>
        <td>windows/linux</td>
        <td>windows(wsl2)/linux</td>
myhloli's avatar
myhloli committed
445
446
    </tr>
    <tr>
447
448
        <td>Memory Requirements</td>
        <td colspan="3">Minimum 16GB+, 32GB+ recommended</td>
myhloli's avatar
myhloli committed
449
    </tr>
450
    <tr>
451
452
        <td>Disk Space Requirements</td>
        <td colspan="3">20GB+, SSD recommended</td>
453
    </tr>
myhloli's avatar
myhloli committed
454
    <tr>
455
456
        <td>Python Version</td>
        <td colspan="3">3.10-3.13</td>
myhloli's avatar
myhloli committed
457
458
    </tr>
    <tr>
459
460
461
462
        <td>CPU Inference Support</td>
        <td></td>
        <td></td>
        <td></td>
myhloli's avatar
myhloli committed
463
464
    </tr>
    <tr>
465
466
467
468
        <td>GPU Requirements</td>
        <td>Turing architecture or later, 6GB+ VRAM or Apple Silicon</td>
        <td>Ampere architecture or later, 8GB+ VRAM</td>
        <td>Ampere architecture or later, 24GB+ VRAM</td>
myhloli's avatar
myhloli committed
469
470
    </tr>
</table>
xuchao's avatar
xuchao committed
471

472
## Online Demo
473

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
474
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://mineru.net/OpenSourceTools/Extractor?source=github)
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
475
476
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
xuchao's avatar
xuchao committed
477

478
479
480
### 🚀🚀🚀VLM demo
[![HuggingFace](https://img.shields.io/badge/VLM_Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/mineru2)

481
482
483
## Local Deployment

### 1. Install MinerU
xuchao's avatar
xuchao committed
484

485
#### 1.1 Install via pip or uv
486

487
```bash
488
489
pip install --upgrade pip
pip install uv
490
uv pip install -U "mineru[core]"
491
```
492

493
#### 1.2 Install from source
xuchao's avatar
xuchao committed
494

495
496
497
498
499
```bash
git clone https://github.com/opendatalab/MinerU.git
cd MinerU
uv pip install -e .[core]
```
500

501
502
503
504
505
506
507
508
509
510
511
512
#### 1.3 Install the Full Version (Supports sglang Acceleration)

If you need to use **sglang to accelerate VLM model inference**, you can choose any of the following methods to install the full version:

- Install using uv or pip:
  ```bash
  uv pip install -U "mineru[all]"
  ```
- Install from source:
  ```bash
  uv pip install -e .[all]
  ```
513
- Build image using Dockerfile:
514
515
516
  ```bash
  wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/global/Dockerfile
  docker build -t mineru-sglang:latest -f Dockerfile .
517
518
519
  ```
  Start Docker container:
  ```bash
520
521
522
523
524
525
  docker run --gpus all \
    --shm-size 32g \
    -p 30000:30000 \
    --ipc=host \
    mineru-sglang:latest \
    mineru-sglang-server --host 0.0.0.0 --port 30000
526
  ```
527
528
529
530
531
  Or start using Docker Compose:
  ```bash
    wget https://gcore.jsdelivr.net/gh/opendatalab/MinerU@master/docker/compose.yaml
    docker compose -f compose.yaml up -d
  ```
532
533
534
  
> [!TIP]
> The Dockerfile uses `lmsysorg/sglang:v0.4.7-cu124` as the default base image. If necessary, you can modify it to another platform version.
myhloli's avatar
myhloli committed
535

536
---
537

538
539
540
541
542
543
544
545
546
547
### 2. Using MinerU

#### 2.1 Command Line Usage

##### Basic Usage

The simplest command line invocation is:

```bash
mineru -p <input_path> -o <output_path>
548
549
```

550
551
- `<input_path>`: Local PDF file or directory (supports pdf/png/jpg/jpeg)
- `<output_path>`: Output directory
myhloli's avatar
myhloli committed
552

553
##### View Help Information
myhloli's avatar
myhloli committed
554

555
556
557
558
559
Get all available parameter descriptions:

```bash
mineru --help
```
myhloli's avatar
myhloli committed
560

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
##### Parameter Details

```text
Usage: mineru [OPTIONS]

Options:
  -v, --version                   Show version and exit
  -p, --path PATH                 Input file path or directory (required)
  -o, --output PATH              Output directory (required)
  -m, --method [auto|txt|ocr]     Parsing method: auto (default), txt, ocr (pipeline backend only)
  -b, --backend [pipeline|vlm-transformers|vlm-sglang-engine|vlm-sglang-client]
                                  Parsing backend (default: pipeline)
  -l, --lang [ch|ch_server|... ]  Specify document language (improves OCR accuracy, pipeline backend only)
  -u, --url TEXT                  Service address when using sglang-client
  -s, --start INTEGER             Starting page number (0-based)
  -e, --end INTEGER               Ending page number (0-based)
  -f, --formula BOOLEAN           Enable formula parsing (default: on, pipeline backend only)
  -t, --table BOOLEAN             Enable table parsing (default: on, pipeline backend only)
  -d, --device TEXT               Inference device (e.g., cpu/cuda/cuda:0/npu/mps, pipeline backend only)
  --vram INTEGER                  Maximum GPU VRAM usage per process (pipeline backend only)
  --source [huggingface|modelscope|local]
                                  Model source, default: huggingface
  --help                          Show help information
```
585

586
---
587

588
#### 2.2 Model Source Configuration
589

590
MinerU automatically downloads required models from HuggingFace on first run. If HuggingFace is inaccessible, you can switch model sources:
591

592
##### Switch to ModelScope Source
593

594
595
596
```bash
mineru -p <input_path> -o <output_path> --source modelscope
```
597

598
599
600
601
602
Or set environment variable:

```bash
export MINERU_MODEL_SOURCE=modelscope
mineru -p <input_path> -o <output_path>
603
604
```

605
606
607
##### Using Local Models

###### 1. Download Models Locally
608

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
```bash
mineru-models-download --help
```

Or use interactive command-line tool to select models:

```bash
mineru-models-download
```

After download, model paths will be displayed in current terminal and automatically written to `mineru.json` in user directory.

###### 2. Parse Using Local Models

```bash
mineru -p <input_path> -o <output_path> --source local
```

Or enable via environment variable:

```bash
export MINERU_MODEL_SOURCE=local
mineru -p <input_path> -o <output_path>
```

---

#### 2.3 Using sglang to Accelerate VLM Model Inference

##### Start sglang-engine Mode

```bash
mineru -p <input_path> -o <output_path> -b vlm-sglang-engine
```

##### Start sglang-server/client Mode

1. Start Server:

```bash
mineru-sglang-server --port 30000
```

2. Use Client in another terminal:

```bash
mineru -p <input_path> -o <output_path> -b vlm-sglang-client -u http://127.0.0.1:30000
```
657

658
659
> [!TIP]
> For more information about output files, please refer to [Output File Documentation](docs/output_file_en_us.md)
myhloli's avatar
myhloli committed
660

661
---
myhloli's avatar
myhloli committed
662

663
### 3. API Usage
myhloli's avatar
myhloli committed
664

665
666
You can also call MinerU through Python code, see example code at:
👉 [Python Usage Example](demo/demo.py)
赵小蒙's avatar
赵小蒙 committed
667

668
---
赵小蒙's avatar
赵小蒙 committed
669

670
### 4. Deploy Derivative Projects
赵小蒙's avatar
赵小蒙 committed
671

672
Community developers have created various extensions based on MinerU, including:
673

674
675
- Graphical interface based on Gradio
- Web API based on FastAPI
676
677
- Client/server architecture with multi-GPU load balancing
- MCP Server based on the official API
678

679
These projects typically offer better user experience and additional features.
680

681
For detailed deployment instructions, please refer to:
682
👉 [Derivative Projects Documentation](projects/README.md)
赵小蒙's avatar
赵小蒙 committed
683

684
---
赵小蒙's avatar
赵小蒙 committed
685

xuchao's avatar
xuchao committed
686
# TODO
赵小蒙's avatar
赵小蒙 committed
687

688
689
690
- [x] Reading order based on the model  
- [x] Recognition of `index` and `list` in the main text  
- [x] Table recognition
myhloli's avatar
myhloli committed
691
- [x] Heading Classification
692
693
694
- [ ] Code block recognition in the main text
- [ ] [Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
695

myhloli's avatar
myhloli committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# Known Issues

- Reading order is determined by the model based on the spatial distribution of readable content, and may be out of order in some areas under extremely complex layouts.
- Vertical text is not supported.
- Tables of contents and lists are recognized through rules, and some uncommon list formats may not be recognized.
- Code blocks are not yet supported in the layout model.
- Comic books, art albums, primary school textbooks, and exercises cannot be parsed well.
- Table recognition may result in row/column recognition errors in complex tables.
- OCR recognition may produce inaccurate characters in PDFs of lesser-known languages (e.g., diacritical marks in Latin script, easily confused characters in Arabic script).
- Some formulas may not render correctly in Markdown.

# FAQ

[FAQ in Chinese](docs/FAQ_zh_cn.md)

[FAQ in English](docs/FAQ_en_us.md)

赵小蒙's avatar
赵小蒙 committed
713
714
# All Thanks To Our Contributors

715
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
716
717
718
719
720
721
722
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

723
Currently, some models in this project are trained based on YOLO. However, since YOLO follows the AGPL license, it may impose restrictions on certain use cases. In future iterations, we plan to explore and replace these with models under more permissive licenses to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
724
725

# Acknowledgments
726

xuchao's avatar
xuchao committed
727
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
728
- [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO)
729
- [UniMERNet](https://github.com/opendatalab/UniMERNet)
730
- [RapidTable](https://github.com/RapidAI/RapidTable)
赵小蒙's avatar
赵小蒙 committed
731
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
732
- [PaddleOCR2Pytorch](https://github.com/frotms/PaddleOCR2Pytorch)
733
- [layoutreader](https://github.com/ppaanngggg/layoutreader)
734
- [xy-cut](https://github.com/Sanster/xy-cut)
赵小蒙's avatar
赵小蒙 committed
735
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
736
- [pypdfium2](https://github.com/pypdfium2-team/pypdfium2)
737
- [pdftext](https://github.com/datalab-to/pdftext)
赵小蒙's avatar
赵小蒙 committed
738
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
739
- [pypdf](https://github.com/py-pdf/pypdf)
赵小蒙's avatar
赵小蒙 committed
740

赵小蒙's avatar
赵小蒙 committed
741
742
743
# Citation

```bibtex
744
745
746
747
748
749
750
751
752
753
@misc{wang2024mineruopensourcesolutionprecise,
      title={MinerU: An Open-Source Solution for Precise Document Content Extraction}, 
      author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
      year={2024},
      eprint={2409.18839},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.18839}, 
}

Conghui He's avatar
Conghui He committed
754
755
756
757
758
759
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}
赵小蒙's avatar
赵小蒙 committed
760
761
762
```

# Star History
赵小蒙's avatar
赵小蒙 committed
763

赵小蒙's avatar
赵小蒙 committed
764
765
766
767
768
769
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
770
</a>
qiangqiang199's avatar
qiangqiang199 committed
771

xuchao's avatar
xuchao committed
772
# Magic-doc
773

xuchao's avatar
xuchao committed
774
775
776
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
777

xuchao's avatar
xuchao committed
778
779
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
780
# Links
xuchao's avatar
xuchao committed
781

qiangqiang199's avatar
qiangqiang199 committed
782
783
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
784
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)