"tests/vscode:/vscode.git/clone" did not exist on "34461d486ef7119a7d84e9b96a9b5e6c18c56b5d"
README.md 36.9 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
16

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
17
18
19
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
myhloli's avatar
myhloli committed
20
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
sfk's avatar
sfk committed
21
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/pdf/2409.18839?)
22

xuchao's avatar
xuchao committed
23
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
24

xuchao's avatar
xuchao committed
25
<!-- language -->
26

xuchao's avatar
xuchao committed
27
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
28

xuchao's avatar
xuchao committed
29
<!-- hot link -->
30

徐超's avatar
徐超 committed
31
<p align="center">
xuchao's avatar
xuchao committed
32
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
徐超's avatar
徐超 committed
33
34
</p>

xuchao's avatar
xuchao committed
35
<!-- join us -->
36

徐超's avatar
徐超 committed
37
<p align="center">
xuchao's avatar
xuchao committed
38
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
39
</p>
赵小蒙's avatar
赵小蒙 committed
40

xuchao's avatar
xuchao committed
41
</div>
赵小蒙's avatar
赵小蒙 committed
42

xuchao's avatar
xuchao committed
43
# Changelog
44
45
46
47
- 2024/10/31 0.9.0 released. This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:
  - Refactored the sorting module code to use [layoutreader](https://github.com/ppaanngggg/layoutreader) for reading order sorting, ensuring high accuracy in various layouts.
  - Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.
  - Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.
48
  - Refactored the matching logic for figures, tables, and descriptive text, greatly enhancing the accuracy of matching captions and footnotes to figures and tables, and reducing the loss rate of descriptive text to near zero.
49
50
51
52
53
54
  - Added multi-language support for OCR, supporting detection and recognition of 84 languages.For the list of supported languages, see [OCR Language Support List](https://paddlepaddle.github.io/PaddleOCR/latest/en/ppocr/blog/multi_languages.html#5-support-languages-and-abbreviations).
  - Added memory recycling logic and other memory optimization measures, significantly reducing memory usage. The memory requirement for enabling all acceleration features except table acceleration (layout/formula/OCR) has been reduced from 16GB to 8GB, and the memory requirement for enabling all acceleration features has been reduced from 24GB to 10GB.
  - Optimized configuration file feature switches, adding an independent formula detection switch to significantly improve speed and parsing results when formula detection is not needed.
  - Integrated [PDF-Extract-Kit 1.0](https://github.com/opendatalab/PDF-Extract-Kit):
    - Added the self-developed `doclayout_yolo` model, which speeds up processing by more than 10 times compared to the original solution while maintaining similar parsing effects, and can be freely switched with `layoutlmv3` via the configuration file.
    - Upgraded formula parsing to `unimernet 0.2.1`, improving formula parsing accuracy while significantly reducing memory usage.
55
    - Due to the repository change for `PDF-Extract-Kit 1.0`, you need to re-download the model. Please refer to [How to Download Models](docs/how_to_download_models_en.md) for detailed steps.
sfk's avatar
sfk committed
56
- 2024/09/27 Version 0.8.1 released, Fixed some bugs, and providing a [localized deployment version](projects/web_demo/README.md) of the [online demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF/) and the [front-end interface](projects/web/README.md).
drunkpig's avatar
drunkpig committed
57
- 2024/09/09: Version 0.8.0 released, supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.
58
- 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
xuchao's avatar
xuchao committed
59
60
61
62
63
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release

<!-- TABLE OF CONTENT -->
64

xuchao's avatar
xuchao committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
            <li><a href="#using-gpu">Using GPU</a></li>
            </ul>
        </li>
        <li><a href="#usage">Usage</a>
            <ul>
            <li><a href="#command-line">Command Line</a></li>
            <li><a href="#api">API</a></li>
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
84
            <li><a href="#deploy-derived-projects">Deploy Derived Projects</a></li>
xuchao's avatar
xuchao committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            <li><a href="#development-guide">Development Guide</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
105

xuchao's avatar
xuchao committed
106
## Project Introduction
107

xuchao's avatar
xuchao committed
108
109
110
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
111

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
112
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
113

xuchao's avatar
xuchao committed
114
115
## Key Features

116
117
118
119
120
121
122
123
124
125
126
127
- Remove headers, footers, footnotes, page numbers, etc., to ensure semantic coherence.
- Output text in human-readable order, suitable for single-column, multi-column, and complex layouts.
- Preserve the structure of the original document, including headings, paragraphs, lists, etc.
- Extract images, image descriptions, tables, table titles, and footnotes.
- Automatically recognize and convert formulas in the document to LaTeX format.
- Automatically recognize and convert tables in the document to LaTeX or HTML format.
- Automatically detect scanned PDFs and garbled PDFs and enable OCR functionality.
- OCR supports detection and recognition of 84 languages.
- Supports multiple output formats, such as multimodal and NLP Markdown, JSON sorted by reading order, and rich intermediate formats.
- Supports various visualization results, including layout visualization and span visualization, for efficient confirmation of output quality.
- Supports both CPU and GPU environments.
- Compatible with Windows, Linux, and Mac platforms.
xuchao's avatar
xuchao committed
128
129
130
131
132
133

## Quick Start

If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
134

xuchao's avatar
xuchao committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
- [Linux/Windows + CUDA](#Using-GPU)

**⚠️ Pre-installation Notice—Hardware and Software Environment Support**

To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.

By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.

In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

<table>
    <tr>
        <td colspan="3" rowspan="2">Operating System</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
158
159
        <td>x86_64(unsupported ARM Linux)</td>
        <td>x86_64(unsupported ARM Windows)</td>
xuchao's avatar
xuchao committed
160
161
162
163
164
165
166
167
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">Memory</td>
        <td colspan="3">16GB or more, recommended 32GB+</td>
    </tr>
    <tr>
        <td colspan="3">Python Version</td>
168
        <td colspan="3">3.10(Please make sure to create a Python 3.10 virtual environment using conda)</td>
xuchao's avatar
xuchao committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver Version</td>
        <td>latest (Proprietary Driver)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA Environment</td>
        <td>Automatic installation [12.1 (pytorch) + 11.8 (paddle)]</td>
        <td>11.8 (manual installation) + cuDNN v8.7.0 (manual installation)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU Hardware Support List</td>
        <td colspan="2">Minimum Requirement 8G+ VRAM</td>
185
        <td colspan="2">3060ti/3070/4060<br>
186
        8G VRAM enables layout, formula recognition acceleration and OCR acceleration</td>
xuchao's avatar
xuchao committed
187
188
189
        <td rowspan="2">None</td>
    </tr>
    <tr>
190
191
192
        <td colspan="2">Recommended Configuration 10G+ VRAM</td>
        <td colspan="2">3080/3080ti/3090/3090ti/4070/4070ti/4070tisuper/4080/4090<br>
        10G VRAM or more can enable layout, formula recognition, OCR acceleration and table recognition acceleration simultaneously
sfk's avatar
sfk committed
193
        </td>
xuchao's avatar
xuchao committed
194
195
196
197
198
    </tr>
</table>

### Online Demo

199
Stable Version (Stable version verified by QA):  
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
200
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
201
202

Test Version (Synced with dev branch updates, testing new features):  
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
203
204
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
xuchao's avatar
xuchao committed
205
206
207
208

### Quick CPU Demo

#### 1. Install magic-pdf
209

210
211
212
```bash
conda create -n MinerU python=3.10
conda activate MinerU
213
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
214
```
215

xuchao's avatar
xuchao committed
216
217
218
#### 2. Download model weight files

Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
219

220
#### 3. Modify the Configuration File for Additional Configuration
xuchao's avatar
xuchao committed
221

222
223
After completing the [2. Download model weight files](#2-download-model-weight-files) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path.
You can find the `magic-pdf.json` file in your 【user directory】.
224

225
> The user directory for Windows is "C:\\Users\\username", for Linux it is "/home/username", and for macOS it is "/Users/username".
226

227
You can modify certain configurations in this file to enable or disable features, such as table recognition:
228

229
> If the following items are not present in the JSON, please manually add the required items and remove the comment content (standard JSON does not support comments).
230

231
232
```json
{
233
234
235
236
237
238
239
240
241
242
243
244
    // other config
    "layout-config": {
        "model": "layoutlmv3" // Please change to "doclayout_yolo" when using doclayout_yolo.
    },
    "formula-config": {
        "mfd_model": "yolo_v8_mfd",
        "mfr_model": "unimernet_small",
        "enable": true  // The formula recognition feature is enabled by default. If you need to disable it, please change the value here to "false".
    },
    "table-config": {
        "model": "tablemaster",  // When using structEqTable, please change to "struct_eqtable".
        "enable": false, // The table recognition feature is disabled by default. If you need to enable it, please change the value here to "true".
xuchao's avatar
xuchao committed
245
246
        "max_time": 400
    }
247
248
249
}
```

xuchao's avatar
xuchao committed
250
### Using GPU
251

xuchao's avatar
xuchao committed
252
If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system:
253

xuchao's avatar
xuchao committed
254
255
- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md)
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
256
257
- Quick Deployment with Docker
    > Docker requires a GPU with at least 16GB of VRAM, and all acceleration features are enabled by default.
258
259
260
261
262
263
    >
    > Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
    > 
    > ```bash
    > docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
    > ```
264
265
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
266
267
  docker build -t mineru:latest .
  docker run --rm -it --gpus=all mineru:latest /bin/bash
268
269
  magic-pdf --help
  ```
270

xuchao's avatar
xuchao committed
271
## Usage
272

xuchao's avatar
xuchao committed
273
### Command Line
274
275

```bash
xuchao's avatar
xuchao committed
276
277
278
279
280
281
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
282
283
284
285
286
287
288
289
290
291
292
  -o, --output-dir PATH        output local directory  [required]
  -m, --method [ocr|txt|auto]  the method for parsing pdf. ocr: using ocr
                               technique to extract information from pdf. txt:
                               suitable for the text-based pdf only and
                               outperform ocr. auto: automatically choose the
                               best method for parsing pdf from ocr and txt.
                               without method specified, auto will be used by
                               default.
  -l, --lang TEXT              Input the languages in the pdf (if known) to
                               improve OCR accuracy.  Optional. You should
                               input "Abbreviation" with language form url: ht
293
294
                               tps://paddlepaddle.github.io/PaddleOCR/latest/en
                               /ppocr/blog/multi_languages.html#5-support-languages-
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
295
296
297
298
299
300
301
                               and-abbreviations
  -d, --debug BOOLEAN          Enables detailed debugging information during
                               the execution of the CLI commands.
  -s, --start INTEGER          The starting page for PDF parsing, beginning
                               from 0.
  -e, --end INTEGER            The ending page for PDF parsing, beginning from
                               0.
xuchao's avatar
xuchao committed
302
303
304
305
306
307
308
309
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
310
311
```

xuchao's avatar
xuchao committed
312
313
314
315
`{some_pdf}` can be a single PDF file or a directory containing multiple PDFs.
The results will be saved in the `{some_output_dir}` directory. The output file list is as follows:

```text
316
317
├── some_pdf.md                          # markdown file
├── images                               # directory for storing images
318
├── some_pdf_layout.pdf                  # layout diagram (Include layout reading order)
319
320
321
├── some_pdf_middle.json                 # MinerU intermediate processing result
├── some_pdf_model.json                  # model inference result
├── some_pdf_origin.pdf                  # original PDF file
322
323
├── some_pdf_spans.pdf                   # smallest granularity bbox position information diagram
└── some_pdf_content_list.json           # Rich text JSON arranged in reading order
324
325
```

xuchao's avatar
xuchao committed
326
For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).
327

xuchao's avatar
xuchao committed
328
### API
赵小蒙's avatar
赵小蒙 committed
329

xuchao's avatar
xuchao committed
330
Processing files from local disk
331

赵小蒙's avatar
赵小蒙 committed
332
333
334
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
335
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
336
337
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
338
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
339
340
341
342
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
343
Processing files from object storage
344

赵小蒙's avatar
赵小蒙 committed
345
346
347
348
349
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
350
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
351
352
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
353
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
354
355
356
357
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
358
For detailed implementation, refer to:
359

xuchao's avatar
xuchao committed
360
361
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
赵小蒙's avatar
赵小蒙 committed
362

363
364
### Deploy Derived Projects

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
365
Derived projects include secondary development projects based on MinerU by project developers and community developers,  
366
such as application interfaces based on Gradio, RAG based on llama, web demos similar to the official website, lightweight multi-GPU load balancing client/server ends, etc.
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
367
These projects may offer more features and a better user experience.  
368
369
370
For specific deployment methods, please refer to the [Derived Project README](projects/README.md)


xuchao's avatar
xuchao committed
371
### Development Guide
赵小蒙's avatar
赵小蒙 committed
372

xuchao's avatar
xuchao committed
373
TODO
赵小蒙's avatar
赵小蒙 committed
374

xuchao's avatar
xuchao committed
375
# TODO
赵小蒙's avatar
赵小蒙 committed
376

377
378
379
380
- 🗹 Reading order based on the model  
- 🗹 Recognition of `index` and `list` in the main text  
- 🗹 Table recognition
- ☐ Code block recognition in the main text
381
-[Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
382
- ☐ Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
383

xuchao's avatar
xuchao committed
384
# Known Issues
385

386
- Reading order is determined by the model based on the spatial distribution of readable content, and may be out of order in some areas under extremely complex layouts.
387
- Vertical text is not supported.
388
389
- Tables of contents and lists are recognized through rules, and some uncommon list formats may not be recognized.
- Only one level of headings is supported; hierarchical headings are not currently supported.
390
- Code blocks are not yet supported in the layout model.
391
392
393
394
- Comic books, art albums, primary school textbooks, and exercises cannot be parsed well.
- Table recognition may result in row/column recognition errors in complex tables.
- OCR recognition may produce inaccurate characters in PDFs of lesser-known languages (e.g., diacritical marks in Latin script, easily confused characters in Arabic script).
- Some formulas may not render correctly in Markdown.
395

xuchao's avatar
xuchao committed
396
# FAQ
397

xuchao's avatar
xuchao committed
398
[FAQ in Chinese](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
399

xuchao's avatar
xuchao committed
400
[FAQ in English](docs/FAQ_en_us.md)
赵小蒙's avatar
赵小蒙 committed
401

赵小蒙's avatar
赵小蒙 committed
402
403
# All Thanks To Our Contributors

404
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
405
406
407
408
409
410
411
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

xuchao's avatar
xuchao committed
412
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
413
414

# Acknowledgments
415

xuchao's avatar
xuchao committed
416
417
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
418
419
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
420
- [layoutreader](https://github.com/ppaanngggg/layoutreader)
赵小蒙's avatar
赵小蒙 committed
421
422
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
423

赵小蒙's avatar
赵小蒙 committed
424
425
426
# Citation

```bibtex
427
428
429
430
431
432
433
434
435
436
@misc{wang2024mineruopensourcesolutionprecise,
      title={MinerU: An Open-Source Solution for Precise Document Content Extraction}, 
      author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
      year={2024},
      eprint={2409.18839},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.18839}, 
}

Conghui He's avatar
Conghui He committed
437
438
439
440
441
442
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}
赵小蒙's avatar
赵小蒙 committed
443
444
445
```

# Star History
赵小蒙's avatar
赵小蒙 committed
446

赵小蒙's avatar
赵小蒙 committed
447
448
449
450
451
452
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
453
</a>
qiangqiang199's avatar
qiangqiang199 committed
454

xuchao's avatar
xuchao committed
455
# Magic-doc
456

xuchao's avatar
xuchao committed
457
458
459
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
460

xuchao's avatar
xuchao committed
461
462
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
463
# Links
xuchao's avatar
xuchao committed
464

qiangqiang199's avatar
qiangqiang199 committed
465
466
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
467
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)