magic_model.py 41 KB
Newer Older
liukaiwen's avatar
liukaiwen committed
1
import json
kernel.h@qq.com's avatar
kernel.h@qq.com committed
2

3
from magic_pdf.data.dataset import Dataset
4
from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
5
6
7
                                    bbox_relative_pos, box_area, calculate_iou,
                                    calculate_overlap_area_in_bbox1_area_ratio,
                                    get_overlap_area)
8
from magic_pdf.libs.commons import fitz, join_path
liukaiwen's avatar
liukaiwen committed
9
from magic_pdf.libs.coordinate_transform import get_scale_ratio
10
from magic_pdf.libs.local_math import float_gt
liukaiwen's avatar
liukaiwen committed
11
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
12
from magic_pdf.libs.ocr_content_type import CategoryId, ContentType
13
from magic_pdf.pre_proc.remove_bbox_overlap import _remove_overlap_between_bbox
14
15
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
liukaiwen's avatar
liukaiwen committed
16

17
CAPATION_OVERLAP_AREA_RATIO = 0.6
18
MERGE_BOX_OVERLAP_AREA_RATIO = 1.1
liukaiwen's avatar
liukaiwen committed
19

许瑞's avatar
许瑞 committed
20

liukaiwen's avatar
liukaiwen committed
21
class MagicModel:
22
    """每个函数没有得到元素的时候返回空list."""
liukaiwen's avatar
liukaiwen committed
23
24
25

    def __fix_axis(self):
        for model_page_info in self.__model_list:
26
            need_remove_list = []
27
            page_no = model_page_info['page_info']['page_no']
liukaiwen's avatar
liukaiwen committed
28
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
29
                model_page_info, self.__docs.get_page(page_no)
liukaiwen's avatar
liukaiwen committed
30
            )
31
            layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
32
            for layout_det in layout_dets:
33

34
                if layout_det.get('bbox') is not None:
35
                    # 兼容直接输出bbox的模型数据,如paddle
36
                    x0, y0, x1, y1 = layout_det['bbox']
37
38
                else:
                    # 兼容直接输出poly的模型数据,如xxx
39
                    x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
40

liukaiwen's avatar
liukaiwen committed
41
42
43
44
45
46
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
47
                layout_det['bbox'] = bbox
48
49
                # 删除高度或者宽度小于等于0的spans
                if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
liukaiwen's avatar
liukaiwen committed
50
51
52
53
                    need_remove_list.append(layout_det)
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

54
    def __fix_by_remove_low_confidence(self):
55
56
        for model_page_info in self.__model_list:
            need_remove_list = []
57
            layout_dets = model_page_info['layout_dets']
58
            for layout_det in layout_dets:
59
                if layout_det['score'] <= 0.05:
60
61
62
63
64
                    need_remove_list.append(layout_det)
                else:
                    continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)
liukaiwen's avatar
liukaiwen committed
65

66
67
68
    def __fix_by_remove_high_iou_and_low_confidence(self):
        for model_page_info in self.__model_list:
            need_remove_list = []
69
            layout_dets = model_page_info['layout_dets']
70
71
72
73
            for layout_det1 in layout_dets:
                for layout_det2 in layout_dets:
                    if layout_det1 == layout_det2:
                        continue
74
                    if layout_det1['category_id'] in [
blue's avatar
blue committed
75
76
77
78
79
80
81
82
83
84
                        0,
                        1,
                        2,
                        3,
                        4,
                        5,
                        6,
                        7,
                        8,
                        9,
85
                    ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
blue's avatar
blue committed
86
                        if (
87
                            calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
blue's avatar
blue committed
88
89
                            > 0.9
                        ):
90
                            if layout_det1['score'] < layout_det2['score']:
91
92
93
94
95
96
97
98
99
100
101
102
103
                                layout_det_need_remove = layout_det1
                            else:
                                layout_det_need_remove = layout_det2

                            if layout_det_need_remove not in need_remove_list:
                                need_remove_list.append(layout_det_need_remove)
                        else:
                            continue
                    else:
                        continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

104
    def __init__(self, model_list: list, docs: Dataset):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
105
        self.__model_list = model_list
liukaiwen's avatar
liukaiwen committed
106
        self.__docs = docs
blue's avatar
blue committed
107
        """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
kernel.h@qq.com's avatar
kernel.h@qq.com committed
108
        self.__fix_axis()
blue's avatar
blue committed
109
        """删除置信度特别低的模型数据(<0.05),提高质量"""
110
        self.__fix_by_remove_low_confidence()
blue's avatar
blue committed
111
        """删除高iou(>0.9)数据中置信度较低的那个"""
112
        self.__fix_by_remove_high_iou_and_low_confidence()
113
114
        self.__fix_footnote()

115
116
117
118
119
120
121
122
123
    def _bbox_distance(self, bbox1, bbox2):
        left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
        flags = [left, right, bottom, top]
        count = sum([1 if v else 0 for v in flags])
        if count > 1:
            return float('inf')
        if left or right:
            l1 = bbox1[3] - bbox1[1]
            l2 = bbox2[3] - bbox2[1]
124
        else:
125
126
            l1 = bbox1[2] - bbox1[0]
            l2 = bbox2[2] - bbox2[0]
127

128
        if l2 > l1 and (l2 - l1) / l1 > 0.3:
129
130
            return float('inf')

131
132
        return bbox_distance(bbox1, bbox2)

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def __fix_footnote(self):
        # 3: figure, 5: table, 7: footnote
        for model_page_info in self.__model_list:
            footnotes = []
            figures = []
            tables = []

            for obj in model_page_info['layout_dets']:
                if obj['category_id'] == 7:
                    footnotes.append(obj)
                elif obj['category_id'] == 3:
                    figures.append(obj)
                elif obj['category_id'] == 5:
                    tables.append(obj)
                if len(footnotes) * len(figures) == 0:
                    continue
149
150
151
152
153
154
155
156
157
158
159
160
            dis_figure_footnote = {}
            dis_table_footnote = {}

            for i in range(len(footnotes)):
                for j in range(len(figures)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], figures[j]['bbox']
                                ),
161
162
                            )
                        )
163
164
165
166
                    )
                    if pos_flag_count > 1:
                        continue
                    dis_figure_footnote[i] = min(
167
                        self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
168
169
170
171
172
173
174
175
176
177
178
                        dis_figure_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                for j in range(len(tables)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], tables[j]['bbox']
                                ),
179
180
                            )
                        )
181
182
183
                    )
                    if pos_flag_count > 1:
                        continue
184

185
                    dis_table_footnote[i] = min(
186
                        self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
187
188
189
190
191
192
193
                        dis_table_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                if i not in dis_figure_footnote:
                    continue
                if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
                    footnotes[i]['category_id'] = CategoryId.ImageFootnote
liukaiwen's avatar
liukaiwen committed
194
195
196
197
198
199
200
201

    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
202
                if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
liukaiwen's avatar
liukaiwen committed
203
204
205
206
                    keep[i] = False
        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
207
        self, page_no, subject_category_id, object_category_id
liukaiwen's avatar
liukaiwen committed
208
    ):
209
210
        """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object
        只能属于一个 subject."""
liukaiwen's avatar
liukaiwen committed
211
        ret = []
212
        MAX_DIS_OF_POINT = 10**9 + 7
213
214
215
216
217
        """
        subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。
        筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
        再求出筛选出的 subjects 和 object 的最短距离
        """
218
219

        def search_overlap_between_boxes(subject_idx, object_idx):
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
            idxes = [subject_idx, object_idx]
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]

            merged_bbox = [
                min(x0s),
                min(y0s),
                max(x1s),
                max(y1s),
            ]
            ratio = 0

            other_objects = list(
                map(
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
                    filter(
                        lambda x: x['category_id']
                        not in (object_category_id, subject_category_id),
                        self.__model_list[page_no]['layout_dets'],
                    ),
                )
            )
            for other_object in other_objects:
                ratio = max(
                    ratio,
247
248
249
                    get_overlap_area(merged_bbox, other_object['bbox'])
                    * 1.0
                    / box_area(all_bboxes[object_idx]['bbox']),
250
251
252
253
254
                )
                if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO:
                    break

            return ratio
liukaiwen's avatar
liukaiwen committed
255

许瑞's avatar
许瑞 committed
256
        def may_find_other_nearest_bbox(subject_idx, object_idx):
257
            ret = float('inf')
258

许瑞's avatar
许瑞 committed
259
            x0 = min(
260
                all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
261
262
            )
            y0 = min(
263
                all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
264
265
            )
            x1 = max(
266
                all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2]
许瑞's avatar
许瑞 committed
267
268
            )
            y1 = max(
269
                all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3]
许瑞's avatar
许瑞 committed
270
            )
许瑞's avatar
许瑞 committed
271

许瑞's avatar
许瑞 committed
272
            object_area = abs(
273
                all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
274
            ) * abs(
275
                all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
276
            )
许瑞's avatar
许瑞 committed
277
278

            for i in range(len(all_bboxes)):
许瑞's avatar
许瑞 committed
279
280
                if (
                    i == subject_idx
281
                    or all_bboxes[i]['category_id'] != subject_category_id
许瑞's avatar
许瑞 committed
282
                ):
许瑞's avatar
许瑞 committed
283
                    continue
284
285
                if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in(
                    all_bboxes[i]['bbox'], [x0, y0, x1, y1]
许瑞's avatar
许瑞 committed
286
                ):
287

许瑞's avatar
许瑞 committed
288
                    i_area = abs(
289
290
                        all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
                    ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1])
许瑞's avatar
许瑞 committed
291
                    if i_area >= object_area:
292
                        ret = min(float('inf'), dis[i][object_idx])
293

许瑞's avatar
许瑞 committed
294
295
            return ret

blue's avatar
blue committed
296
        def expand_bbbox(idxes):
297
298
299
300
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
blue's avatar
blue committed
301
302
            return min(x0s), min(y0s), max(x1s), max(y1s)

liukaiwen's avatar
liukaiwen committed
303
304
305
        subjects = self.__reduct_overlap(
            list(
                map(
306
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
307
                    filter(
308
309
                        lambda x: x['category_id'] == subject_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
310
311
312
313
314
315
316
317
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
318
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
319
                    filter(
320
321
                        lambda x: x['category_id'] == object_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
322
323
324
325
326
327
                    ),
                )
            )
        )
        subject_object_relation_map = {}

许瑞's avatar
许瑞 committed
328
        subjects.sort(
329
            key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2
许瑞's avatar
许瑞 committed
330
        )  # get the distance !
liukaiwen's avatar
liukaiwen committed
331
332
333
334

        all_bboxes = []

        for v in subjects:
许瑞's avatar
许瑞 committed
335
336
            all_bboxes.append(
                {
337
338
339
                    'category_id': subject_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
340
341
                }
            )
liukaiwen's avatar
liukaiwen committed
342
343

        for v in objects:
许瑞's avatar
许瑞 committed
344
345
            all_bboxes.append(
                {
346
347
348
                    'category_id': object_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
349
350
                }
            )
liukaiwen's avatar
liukaiwen committed
351
352
353
354
355
356
357

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
358
359
                    all_bboxes[i]['category_id'] == subject_category_id
                    and all_bboxes[j]['category_id'] == subject_category_id
liukaiwen's avatar
liukaiwen committed
360
361
362
                ):
                    continue

363
364
365
366
                subject_idx, object_idx = i, j
                if all_bboxes[j]['category_id'] == subject_category_id:
                    subject_idx, object_idx = j, i

367
368
369
370
                if (
                    search_overlap_between_boxes(subject_idx, object_idx)
                    >= MERGE_BOX_OVERLAP_AREA_RATIO
                ):
371
372
373
374
                    dis[i][j] = float('inf')
                    dis[j][i] = dis[i][j]
                    continue

375
376
377
                dis[i][j] = self._bbox_distance(
                    all_bboxes[subject_idx]['bbox'], all_bboxes[object_idx]['bbox']
                )
liukaiwen's avatar
liukaiwen committed
378
379
380
381
382
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
383
            if all_bboxes[i]['category_id'] != subject_category_id:
liukaiwen's avatar
liukaiwen committed
384
385
386
387
388
389
390
391
392
393
394
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
395
                                all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
396
397
398
399
400
401
402
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
403
                    all_bboxes[j]['category_id'] != object_category_id
404
405
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
406
407
                ):
                    continue
blue's avatar
blue committed
408
                left, right, _, _ = bbox_relative_pos(
409
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
blue's avatar
blue committed
410
                )  # 由  pos_flag_count 相关逻辑保证本段逻辑准确性
许瑞's avatar
许瑞 committed
411
                if left or right:
412
                    one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
许瑞's avatar
许瑞 committed
413
                else:
414
                    one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]
许瑞's avatar
许瑞 committed
415
416
                if dis[i][j] > one_way_dis:
                    continue
liukaiwen's avatar
liukaiwen committed
417
418
419
420
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
421
422
423
424
                """
                bug: 离该subject 最近的 object 可能跨越了其它的 subject。
                比如 [this subect] [some sbuject] [the nearest object of subject]
                """
许瑞's avatar
许瑞 committed
425
                if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
许瑞's avatar
许瑞 committed
426

许瑞's avatar
许瑞 committed
427
428
                    candidates.append(arr[0][1])
                    seen.add(arr[0][1])
liukaiwen's avatar
liukaiwen committed
429
430
431
432
433
434
435
436
437
438

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
439
                                    all_bboxes[j]['bbox'], all_bboxes[k]['bbox']
liukaiwen's avatar
liukaiwen committed
440
441
442
443
444
445
446
447
448
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue

                    if (
449
                        all_bboxes[k]['category_id'] != object_category_id
450
451
452
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
许瑞's avatar
许瑞 committed
453
                        or dis[j][k] > dis[i][j]
liukaiwen's avatar
liukaiwen committed
454
455
                    ):
                        continue
许瑞's avatar
许瑞 committed
456

liukaiwen's avatar
liukaiwen committed
457
                    is_nearest = True
458
459
                    for ni in range(i + 1, N):
                        if ni in (j, k) or ni in used or ni in seen:
liukaiwen's avatar
liukaiwen committed
460
461
                            continue

462
                        if not float_gt(dis[ni][k], dis[j][k]):
liukaiwen's avatar
liukaiwen committed
463
464
465
466
                            is_nearest = False
                            break

                    if is_nearest:
blue's avatar
blue committed
467
                        nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
468
                        n_dis = bbox_distance(
469
470
                            all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
                        )
blue's avatar
blue committed
471
472
                        if float_gt(dis[i][j], n_dis):
                            continue
liukaiwen's avatar
liukaiwen committed
473
474
475
476
477
478
479
480
481
                        tmp.append(k)
                        seen.add(k)

                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
blue's avatar
blue committed
482
            ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
483
            ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox']
liukaiwen's avatar
liukaiwen committed
484
485
486
487
488
489
490
491
492
493
494
495
496

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
许瑞's avatar
许瑞 committed
497
498
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
499
                            all_bboxes[idx]['bbox'], bbox
许瑞's avatar
许瑞 committed
500
501
502
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
503
504
505
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
506
507
508
509
                    embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr])
liukaiwen's avatar
liukaiwen committed
510
511
512
513
514
515
516
517
518
519
520
521
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
许瑞's avatar
许瑞 committed
522
523
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
524
                            all_bboxes[j]['bbox'], caption_bbox
许瑞's avatar
许瑞 committed
525
526
527
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
528
529
530
531
532
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
533
534
535
                'subject_body': all_bboxes[i]['bbox'],
                'all': all_bboxes[i]['bbox'],
                'score': all_bboxes[i]['score'],
liukaiwen's avatar
liukaiwen committed
536
537
538
539
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
540
                    [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
541
542
                )
                y0 = min(
543
                    [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
544
545
                )
                x1 = max(
546
                    [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
547
548
                )
                y1 = max(
549
                    [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
550
                )
551
552
553
554
555
556
                result['object_body'] = [x0, y0, x1, y1]
                result['all'] = [
                    min(x0, all_bboxes[i]['bbox'][0]),
                    min(y0, all_bboxes[i]['bbox'][1]),
                    max(x1, all_bboxes[i]['bbox'][2]),
                    max(y1, all_bboxes[i]['bbox'][3]),
liukaiwen's avatar
liukaiwen committed
557
558
559
560
561
562
563
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
564
                total_subject_object_dis += bbox_distance(
565
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
566
567
568
569
570
571
572
573
574
575
576
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
577
            if all_bboxes[i]['category_id'] != object_category_id or i in used:
liukaiwen's avatar
liukaiwen committed
578
579
580
581
                continue
            candidates = []
            for j in range(N):
                if (
582
                    all_bboxes[j]['category_id'] != subject_category_id
583
                    or j in with_caption_subject
liukaiwen's avatar
liukaiwen committed
584
585
586
587
588
589
590
591
592
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

593
594
595
596
    def __tie_up_category_by_distance_v2(
        self, page_no, subject_category_id, object_category_id
    ):

icecraft's avatar
icecraft committed
597
        AXIS_MULPLICITY = 0.5
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        subjects = self.__reduct_overlap(
            list(
                map(
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
                    filter(
                        lambda x: x['category_id'] == subject_category_id,
                        self.__model_list[page_no]['layout_dets'],
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
                    filter(
                        lambda x: x['category_id'] == object_category_id,
                        self.__model_list[page_no]['layout_dets'],
                    ),
                )
            )
        )
621
        M = len(objects)
622
623
624

        subjects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
        objects.sort(key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2)
625
626
627
628
629
630
631
632
633
634

        sub_obj_map_h = {i: [] for i in range(len(subjects))}

        dis_by_directions = {
            'top': [[-1, float('inf')]] * M,
            'bottom': [[-1, float('inf')]] * M,
            'left': [[-1, float('inf')]] * M,
            'right': [[-1, float('inf')]] * M,
        }

635
        for i, obj in enumerate(objects):
636
637
638
639
640
            l_x_axis, l_y_axis = (
                obj['bbox'][2] - obj['bbox'][0],
                obj['bbox'][3] - obj['bbox'][1],
            )
            axis_unit = min(l_x_axis, l_y_axis)
641
642
            for j, sub in enumerate(subjects):

icecraft's avatar
icecraft committed
643
644
                bbox1, bbox2, _ = _remove_overlap_between_bbox(
                    objects[i]['bbox'], subjects[j]['bbox']
645
                )
icecraft's avatar
icecraft committed
646
                left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
647
648
                flags = [left, right, bottom, top]
                if sum([1 if v else 0 for v in flags]) > 1:
649
650
                    continue

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
                if left:
                    if dis_by_directions['left'][i][1] > bbox_distance(
                        obj['bbox'], sub['bbox']
                    ):
                        dis_by_directions['left'][i] = [
                            j,
                            bbox_distance(obj['bbox'], sub['bbox']),
                        ]
                if right:
                    if dis_by_directions['right'][i][1] > bbox_distance(
                        obj['bbox'], sub['bbox']
                    ):
                        dis_by_directions['right'][i] = [
                            j,
                            bbox_distance(obj['bbox'], sub['bbox']),
                        ]
                if bottom:
                    if dis_by_directions['bottom'][i][1] > bbox_distance(
                        obj['bbox'], sub['bbox']
                    ):
                        dis_by_directions['bottom'][i] = [
                            j,
                            bbox_distance(obj['bbox'], sub['bbox']),
                        ]
                if top:
                    if dis_by_directions['top'][i][1] > bbox_distance(
                        obj['bbox'], sub['bbox']
                    ):
                        dis_by_directions['top'][i] = [
                            j,
                            bbox_distance(obj['bbox'], sub['bbox']),
                        ]
            if dis_by_directions['left'][i][1] != float('inf') or dis_by_directions[
                'right'
            ][i][1] != float('inf'):
                if dis_by_directions['left'][i][1] != float(
                    'inf'
                ) and dis_by_directions['right'][i][1] != float('inf'):
                    if AXIS_MULPLICITY * axis_unit >= abs(
                        dis_by_directions['left'][i][1]
                        - dis_by_directions['right'][i][1]
                    ):
                        left_sub_bbox = subjects[dis_by_directions['left'][i][0]][
                            'bbox'
                        ]
                        right_sub_bbox = subjects[dis_by_directions['right'][i][0]][
                            'bbox'
                        ]

                        left_sub_bbox_y_axis = left_sub_bbox[3] - left_sub_bbox[1]
                        right_sub_bbox_y_axis = right_sub_bbox[3] - right_sub_bbox[1]

icecraft's avatar
icecraft committed
703
704
705
706
707
                        if (
                            abs(left_sub_bbox_y_axis - l_y_axis)
                            + dis_by_directions['left'][i][0]
                            > abs(right_sub_bbox_y_axis - l_y_axis)
                            + dis_by_directions['right'][i][0]
708
709
710
711
712
713
                        ):
                            left_or_right = dis_by_directions['right'][i]
                        else:
                            left_or_right = dis_by_directions['left'][i]
                    else:
                        left_or_right = dis_by_directions['left'][i]
icecraft's avatar
icecraft committed
714
                        if left_or_right[1] > dis_by_directions['right'][i][1]:
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
                            left_or_right = dis_by_directions['right'][i]
                else:
                    left_or_right = dis_by_directions['left'][i]
                    if left_or_right[1] == float('inf'):
                        left_or_right = dis_by_directions['right'][i]
            else:
                left_or_right = [-1, float('inf')]

            if dis_by_directions['top'][i][1] != float('inf') or dis_by_directions[
                'bottom'
            ][i][1] != float('inf'):
                if dis_by_directions['top'][i][1] != float('inf') and dis_by_directions[
                    'bottom'
                ][i][1] != float('inf'):
                    if AXIS_MULPLICITY * axis_unit >= abs(
                        dis_by_directions['top'][i][1]
                        - dis_by_directions['bottom'][i][1]
                    ):
                        top_bottom = subjects[dis_by_directions['bottom'][i][0]]['bbox']
                        bottom_top = subjects[dis_by_directions['top'][i][0]]['bbox']

                        top_bottom_x_axis = top_bottom[2] - top_bottom[0]
                        bottom_top_x_axis = bottom_top[2] - bottom_top[0]
icecraft's avatar
icecraft committed
738
                        if abs(top_bottom_x_axis - l_x_axis) + dis_by_directions['bottom'][i][1] > abs(
739
                            bottom_top_x_axis - l_x_axis
icecraft's avatar
icecraft committed
740
                        ) + dis_by_directions['top'][i][1]:
741
                            top_or_bottom = dis_by_directions['top'][i]
icecraft's avatar
icecraft committed
742
743
                        else:
                            top_or_bottom = dis_by_directions['bottom'][i]
744
745
                    else:
                        top_or_bottom = dis_by_directions['top'][i]
icecraft's avatar
icecraft committed
746
                        if top_or_bottom[1] > dis_by_directions['bottom'][i][1]:
747
748
749
750
751
                            top_or_bottom = dis_by_directions['bottom'][i]
                else:
                    top_or_bottom = dis_by_directions['top'][i]
                    if top_or_bottom[1] == float('inf'):
                        top_or_bottom = dis_by_directions['bottom'][i]
752
            else:
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
                top_or_bottom = [-1, float('inf')]

            if left_or_right[1] != float('inf') or top_or_bottom[1] != float('inf'):
                if left_or_right[1] != float('inf') and top_or_bottom[1] != float(
                    'inf'
                ):
                    if AXIS_MULPLICITY * axis_unit >= abs(
                        left_or_right[1] - top_or_bottom[1]
                    ):
                        y_axis_bbox = subjects[left_or_right[0]]['bbox']
                        x_axis_bbox = subjects[top_or_bottom[0]]['bbox']

                        if (
                            abs((x_axis_bbox[2] - x_axis_bbox[0]) - l_x_axis) / l_x_axis
                            > abs((y_axis_bbox[3] - y_axis_bbox[1]) - l_y_axis)
                            / l_y_axis
                        ):
                            sub_obj_map_h[left_or_right[0]].append(i)
                        else:
                            sub_obj_map_h[top_or_bottom[0]].append(i)
                    else:
                        if left_or_right[1] > top_or_bottom[1]:
                            sub_obj_map_h[top_or_bottom[0]].append(i)
                        else:
                            sub_obj_map_h[left_or_right[0]].append(i)
                else:
                    if left_or_right[1] != float('inf'):
                        sub_obj_map_h[left_or_right[0]].append(i)
                    else:
                        sub_obj_map_h[top_or_bottom[0]].append(i)
783
784
785
786
        ret = []
        for i in sub_obj_map_h.keys():
            ret.append(
                {
icecraft's avatar
icecraft committed
787
788
789
790
                    'sub_bbox': {
                        'bbox': subjects[i]['bbox'],
                        'score': subjects[i]['score'],
                    },
791
792
793
794
                    'obj_bboxes': [
                        {'score': objects[j]['score'], 'bbox': objects[j]['bbox']}
                        for j in sub_obj_map_h[i]
                    ],
795
796
797
798
799
800
801
802
803
804
805
806
807
                    'sub_idx': i,
                }
            )
        return ret

    def get_imgs_v2(self, page_no: int):
        with_captions = self.__tie_up_category_by_distance_v2(page_no, 3, 4)
        with_footnotes = self.__tie_up_category_by_distance_v2(
            page_no, 3, CategoryId.ImageFootnote
        )
        ret = []
        for v in with_captions:
            record = {
808
809
                'image_body': v['sub_bbox'],
                'image_caption_list': v['obj_bboxes'],
810
811
812
            }
            filter_idx = v['sub_idx']
            d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
813
            record['image_footnote_list'] = d['obj_bboxes']
814
815
816
817
818
819
820
821
822
            ret.append(record)
        return ret

    def get_tables_v2(self, page_no: int) -> list:
        with_captions = self.__tie_up_category_by_distance_v2(page_no, 5, 6)
        with_footnotes = self.__tie_up_category_by_distance_v2(page_no, 5, 7)
        ret = []
        for v in with_captions:
            record = {
823
824
                'table_body': v['sub_bbox'],
                'table_caption_list': v['obj_bboxes'],
825
826
827
            }
            filter_idx = v['sub_idx']
            d = next(filter(lambda x: x['sub_idx'] == filter_idx, with_footnotes))
828
            record['table_footnote_list'] = d['obj_bboxes']
829
830
831
            ret.append(record)
        return ret

blue's avatar
blue committed
832
    def get_imgs(self, page_no: int):
833
834
835
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
        with_footnotes, _ = self.__tie_up_category_by_distance(
            page_no, 3, CategoryId.ImageFootnote
blue's avatar
blue committed
836
        )
837
838
839
840
841
842
843
844
845
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
                'score': with_captions[i]['score'],
                'img_caption_bbox': with_captions[i].get('object_body', None),
                'img_body_bbox': with_captions[i]['subject_body'],
                'img_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
846
            }
847
848
849
850
851
852
853
854

            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
            ret.append(record)
        return ret
liukaiwen's avatar
liukaiwen committed
855
856

    def get_tables(
857
        self, page_no: int
liukaiwen's avatar
liukaiwen committed
858
859
860
861
862
863
864
865
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
866
867
868
869
                'score': with_captions[i]['score'],
                'table_caption_bbox': with_captions[i].get('object_body', None),
                'table_body_bbox': with_captions[i]['subject_body'],
                'table_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
870
871
            }

872
873
874
875
876
            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
liukaiwen's avatar
liukaiwen committed
877
878
879
880
            ret.append(record)
        return ret

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
881
        inline_equations = self.__get_blocks_by_type(
882
            ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex']
883
884
        )
        interline_equations = self.__get_blocks_by_type(
885
            ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex']
886
887
888
889
        )
        interline_equations_blocks = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
        )
liukaiwen's avatar
liukaiwen committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        return inline_equations, interline_equations, interline_equations_blocks

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
        return blocks

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
        return blocks

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
        return blocks

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
        text_spans = []
        model_page_info = self.__model_list[page_no]
907
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
908
        for layout_det in layout_dets:
909
            if layout_det['category_id'] == '15':
liukaiwen's avatar
liukaiwen committed
910
                span = {
911
912
                    'bbox': layout_det['bbox'],
                    'content': layout_det['text'],
liukaiwen's avatar
liukaiwen committed
913
914
915
916
917
                }
                text_spans.append(span)
        return text_spans

    def get_all_spans(self, page_no: int) -> list:
918

919
920
921
922
923
924
        def remove_duplicate_spans(spans):
            new_spans = []
            for span in spans:
                if not any(span == existing_span for existing_span in new_spans):
                    new_spans.append(span)
            return new_spans
blue's avatar
blue committed
925

liukaiwen's avatar
liukaiwen committed
926
927
        all_spans = []
        model_page_info = self.__model_list[page_no]
928
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
929
930
931
        allow_category_id_list = [3, 5, 13, 14, 15]
        """当成span拼接的"""
        #  3: 'image', # 图片
932
        #  5: 'table',       # 表格
liukaiwen's avatar
liukaiwen committed
933
934
935
936
        #  13: 'inline_equation',     # 行内公式
        #  14: 'interline_equation',      # 行间公式
        #  15: 'text',      # ocr识别文本
        for layout_det in layout_dets:
937
            category_id = layout_det['category_id']
liukaiwen's avatar
liukaiwen committed
938
            if category_id in allow_category_id_list:
939
                span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
liukaiwen's avatar
liukaiwen committed
940
                if category_id == 3:
941
                    span['type'] = ContentType.Image
liukaiwen's avatar
liukaiwen committed
942
                elif category_id == 5:
943
                    # 获取table模型结果
944
945
                    latex = layout_det.get('latex', None)
                    html = layout_det.get('html', None)
946
                    if latex:
947
                        span['latex'] = latex
948
                    elif html:
949
950
                        span['html'] = html
                    span['type'] = ContentType.Table
liukaiwen's avatar
liukaiwen committed
951
                elif category_id == 13:
952
953
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InlineEquation
liukaiwen's avatar
liukaiwen committed
954
                elif category_id == 14:
955
956
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InterlineEquation
liukaiwen's avatar
liukaiwen committed
957
                elif category_id == 15:
958
959
                    span['content'] = layout_det['text']
                    span['type'] = ContentType.Text
liukaiwen's avatar
liukaiwen committed
960
                all_spans.append(span)
961
        return remove_duplicate_spans(all_spans)
liukaiwen's avatar
liukaiwen committed
962
963
964

    def get_page_size(self, page_no: int):  # 获取页面宽高
        # 获取当前页的page对象
965
        page = self.__docs.get_page(page_no).get_page_info()
liukaiwen's avatar
liukaiwen committed
966
        # 获取当前页的宽高
967
968
        page_w = page.w
        page_h = page.h
liukaiwen's avatar
liukaiwen committed
969
970
        return page_w, page_h

971
972
973
    def __get_blocks_by_type(
        self, type: int, page_no: int, extra_col: list[str] = []
    ) -> list:
liukaiwen's avatar
liukaiwen committed
974
975
        blocks = []
        for page_dict in self.__model_list:
976
977
978
            layout_dets = page_dict.get('layout_dets', [])
            page_info = page_dict.get('page_info', {})
            page_number = page_info.get('page_no', -1)
liukaiwen's avatar
liukaiwen committed
979
980
981
            if page_no != page_number:
                continue
            for item in layout_dets:
982
983
                category_id = item.get('category_id', -1)
                bbox = item.get('bbox', None)
liukaiwen's avatar
liukaiwen committed
984

liukaiwen's avatar
liukaiwen committed
985
                if category_id == type:
986
                    block = {
987
988
                        'bbox': bbox,
                        'score': item.get('score'),
989
                    }
liukaiwen's avatar
liukaiwen committed
990
991
992
993
994
                    for col in extra_col:
                        block[col] = item.get(col, None)
                    blocks.append(block)
        return blocks

许瑞's avatar
许瑞 committed
995
996
997
    def get_model_list(self, page_no):
        return self.__model_list[page_no]

998

999
1000
if __name__ == '__main__':
    drw = DiskReaderWriter(r'D:/project/20231108code-clean')
liukaiwen's avatar
liukaiwen committed
1001
    if 0:
1002
1003
        pdf_file_path = r'linshixuqiu\19983-00.pdf'
        model_file_path = r'linshixuqiu\19983-00_new.json'
liukaiwen's avatar
liukaiwen committed
1004
1005
1006
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
1007
1008
        write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00'
        img_bucket_path = 'imgs'
liukaiwen's avatar
liukaiwen committed
1009
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
1010
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
1011
1012
1013
1014
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
1015
            drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.json')
liukaiwen's avatar
liukaiwen committed
1016
1017
        )
        pdf_bytes = drw.read(
1018
            '/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf', AbsReaderWriter.MODE_BIN
liukaiwen's avatar
liukaiwen committed
1019
        )
1020
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
1021
1022
1023
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))