magic_model.py 30.6 KB
Newer Older
liukaiwen's avatar
liukaiwen committed
1
import json
kernel.h@qq.com's avatar
kernel.h@qq.com committed
2

3
from magic_pdf.libs.boxbase import (_is_in, _is_part_overlap, bbox_distance,
4
5
6
                                    bbox_relative_pos, box_area, calculate_iou,
                                    calculate_overlap_area_in_bbox1_area_ratio,
                                    get_overlap_area)
7
from magic_pdf.libs.commons import fitz, join_path
liukaiwen's avatar
liukaiwen committed
8
from magic_pdf.libs.coordinate_transform import get_scale_ratio
9
from magic_pdf.libs.local_math import float_gt
liukaiwen's avatar
liukaiwen committed
10
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
11
12
13
from magic_pdf.libs.ocr_content_type import CategoryId, ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
liukaiwen's avatar
liukaiwen committed
14

15
CAPATION_OVERLAP_AREA_RATIO = 0.6
16
MERGE_BOX_OVERLAP_AREA_RATIO = 1.1
liukaiwen's avatar
liukaiwen committed
17

许瑞's avatar
许瑞 committed
18

liukaiwen's avatar
liukaiwen committed
19
class MagicModel:
20
    """每个函数没有得到元素的时候返回空list."""
liukaiwen's avatar
liukaiwen committed
21
22
23

    def __fix_axis(self):
        for model_page_info in self.__model_list:
24
            need_remove_list = []
25
            page_no = model_page_info['page_info']['page_no']
liukaiwen's avatar
liukaiwen committed
26
27
28
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
                model_page_info, self.__docs[page_no]
            )
29
            layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
30
            for layout_det in layout_dets:
31

32
                if layout_det.get('bbox') is not None:
33
                    # 兼容直接输出bbox的模型数据,如paddle
34
                    x0, y0, x1, y1 = layout_det['bbox']
35
36
                else:
                    # 兼容直接输出poly的模型数据,如xxx
37
                    x0, y0, _, _, x1, y1, _, _ = layout_det['poly']
38

liukaiwen's avatar
liukaiwen committed
39
40
41
42
43
44
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
45
                layout_det['bbox'] = bbox
46
47
                # 删除高度或者宽度小于等于0的spans
                if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
liukaiwen's avatar
liukaiwen committed
48
49
50
51
                    need_remove_list.append(layout_det)
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

52
    def __fix_by_remove_low_confidence(self):
53
54
        for model_page_info in self.__model_list:
            need_remove_list = []
55
            layout_dets = model_page_info['layout_dets']
56
            for layout_det in layout_dets:
57
                if layout_det['score'] <= 0.05:
58
59
60
61
62
                    need_remove_list.append(layout_det)
                else:
                    continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)
liukaiwen's avatar
liukaiwen committed
63

64
65
66
    def __fix_by_remove_high_iou_and_low_confidence(self):
        for model_page_info in self.__model_list:
            need_remove_list = []
67
            layout_dets = model_page_info['layout_dets']
68
69
70
71
            for layout_det1 in layout_dets:
                for layout_det2 in layout_dets:
                    if layout_det1 == layout_det2:
                        continue
72
                    if layout_det1['category_id'] in [
blue's avatar
blue committed
73
74
75
76
77
78
79
80
81
82
                        0,
                        1,
                        2,
                        3,
                        4,
                        5,
                        6,
                        7,
                        8,
                        9,
83
                    ] and layout_det2['category_id'] in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:
blue's avatar
blue committed
84
                        if (
85
                            calculate_iou(layout_det1['bbox'], layout_det2['bbox'])
blue's avatar
blue committed
86
87
                            > 0.9
                        ):
88
                            if layout_det1['score'] < layout_det2['score']:
89
90
91
92
93
94
95
96
97
98
99
100
101
                                layout_det_need_remove = layout_det1
                            else:
                                layout_det_need_remove = layout_det2

                            if layout_det_need_remove not in need_remove_list:
                                need_remove_list.append(layout_det_need_remove)
                        else:
                            continue
                    else:
                        continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

liukaiwen's avatar
liukaiwen committed
102
    def __init__(self, model_list: list, docs: fitz.Document):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
103
        self.__model_list = model_list
liukaiwen's avatar
liukaiwen committed
104
        self.__docs = docs
blue's avatar
blue committed
105
        """为所有模型数据添加bbox信息(缩放,poly->bbox)"""
kernel.h@qq.com's avatar
kernel.h@qq.com committed
106
        self.__fix_axis()
blue's avatar
blue committed
107
        """删除置信度特别低的模型数据(<0.05),提高质量"""
108
        self.__fix_by_remove_low_confidence()
blue's avatar
blue committed
109
        """删除高iou(>0.9)数据中置信度较低的那个"""
110
        self.__fix_by_remove_high_iou_and_low_confidence()
111
112
        self.__fix_footnote()

113
114
115
116
117
118
119
120
121
    def _bbox_distance(self, bbox1, bbox2):
        left, right, bottom, top = bbox_relative_pos(bbox1, bbox2)
        flags = [left, right, bottom, top]
        count = sum([1 if v else 0 for v in flags])
        if count > 1:
            return float('inf')
        if left or right:
            l1 = bbox1[3] - bbox1[1]
            l2 = bbox2[3] - bbox2[1]
122
        else:
123
124
            l1 = bbox1[2] - bbox1[0]
            l2 = bbox2[2] - bbox2[0]
125
126
127
128

        if l2 > l1 and (l2 - l1) / l1 > 0.5:
            return float('inf')

129
130
        return bbox_distance(bbox1, bbox2)

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    def __fix_footnote(self):
        # 3: figure, 5: table, 7: footnote
        for model_page_info in self.__model_list:
            footnotes = []
            figures = []
            tables = []

            for obj in model_page_info['layout_dets']:
                if obj['category_id'] == 7:
                    footnotes.append(obj)
                elif obj['category_id'] == 3:
                    figures.append(obj)
                elif obj['category_id'] == 5:
                    tables.append(obj)
                if len(footnotes) * len(figures) == 0:
                    continue
147
148
149
150
151
152
153
154
155
156
157
158
            dis_figure_footnote = {}
            dis_table_footnote = {}

            for i in range(len(footnotes)):
                for j in range(len(figures)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], figures[j]['bbox']
                                ),
159
160
                            )
                        )
161
162
163
164
                    )
                    if pos_flag_count > 1:
                        continue
                    dis_figure_footnote[i] = min(
165
                        self._bbox_distance(figures[j]['bbox'], footnotes[i]['bbox']),
166
167
168
169
170
171
172
173
174
175
176
                        dis_figure_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                for j in range(len(tables)):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    footnotes[i]['bbox'], tables[j]['bbox']
                                ),
177
178
                            )
                        )
179
180
181
                    )
                    if pos_flag_count > 1:
                        continue
182

183
                    dis_table_footnote[i] = min(
184
                        self._bbox_distance(tables[j]['bbox'], footnotes[i]['bbox']),
185
186
187
188
189
190
191
                        dis_table_footnote.get(i, float('inf')),
                    )
            for i in range(len(footnotes)):
                if i not in dis_figure_footnote:
                    continue
                if dis_table_footnote.get(i, float('inf')) > dis_figure_footnote[i]:
                    footnotes[i]['category_id'] = CategoryId.ImageFootnote
liukaiwen's avatar
liukaiwen committed
192
193
194
195
196
197
198
199

    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
200
                if _is_in(bboxes[i]['bbox'], bboxes[j]['bbox']):
liukaiwen's avatar
liukaiwen committed
201
202
203
204
                    keep[i] = False
        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
205
        self, page_no, subject_category_id, object_category_id
liukaiwen's avatar
liukaiwen committed
206
    ):
207
208
        """假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object
        只能属于一个 subject."""
liukaiwen's avatar
liukaiwen committed
209
        ret = []
210
        MAX_DIS_OF_POINT = 10**9 + 7
211
212
213
214
215
        """
        subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。
        筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
        再求出筛选出的 subjects 和 object 的最短距离
        """
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        def search_overlap_between_boxes(
            subject_idx, object_idx
        ):
            idxes = [subject_idx, object_idx]
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]

            merged_bbox = [
                min(x0s),
                min(y0s),
                max(x1s),
                max(y1s),
            ]
            ratio = 0

            other_objects = list(
                map(
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
                    filter(
                        lambda x: x['category_id']
                        not in (object_category_id, subject_category_id),
                        self.__model_list[page_no]['layout_dets'],
                    ),
                )
            )
            for other_object in other_objects:
                ratio = max(
                    ratio,
                    get_overlap_area(
                        merged_bbox, other_object['bbox']
                    ) * 1.0 / box_area(all_bboxes[object_idx]['bbox'])
                )
                if ratio >= MERGE_BOX_OVERLAP_AREA_RATIO:
                    break

            return ratio
liukaiwen's avatar
liukaiwen committed
254

许瑞's avatar
许瑞 committed
255
        def may_find_other_nearest_bbox(subject_idx, object_idx):
256
            ret = float('inf')
257

许瑞's avatar
许瑞 committed
258
            x0 = min(
259
                all_bboxes[subject_idx]['bbox'][0], all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
260
261
            )
            y0 = min(
262
                all_bboxes[subject_idx]['bbox'][1], all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
263
264
            )
            x1 = max(
265
                all_bboxes[subject_idx]['bbox'][2], all_bboxes[object_idx]['bbox'][2]
许瑞's avatar
许瑞 committed
266
267
            )
            y1 = max(
268
                all_bboxes[subject_idx]['bbox'][3], all_bboxes[object_idx]['bbox'][3]
许瑞's avatar
许瑞 committed
269
            )
许瑞's avatar
许瑞 committed
270

许瑞's avatar
许瑞 committed
271
            object_area = abs(
272
                all_bboxes[object_idx]['bbox'][2] - all_bboxes[object_idx]['bbox'][0]
许瑞's avatar
许瑞 committed
273
            ) * abs(
274
                all_bboxes[object_idx]['bbox'][3] - all_bboxes[object_idx]['bbox'][1]
许瑞's avatar
许瑞 committed
275
            )
许瑞's avatar
许瑞 committed
276
277

            for i in range(len(all_bboxes)):
许瑞's avatar
许瑞 committed
278
279
                if (
                    i == subject_idx
280
                    or all_bboxes[i]['category_id'] != subject_category_id
许瑞's avatar
许瑞 committed
281
                ):
许瑞's avatar
许瑞 committed
282
                    continue
283
284
                if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]['bbox']) or _is_in(
                    all_bboxes[i]['bbox'], [x0, y0, x1, y1]
许瑞's avatar
许瑞 committed
285
                ):
286

许瑞's avatar
许瑞 committed
287
                    i_area = abs(
288
289
                        all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
                    ) * abs(all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1])
许瑞's avatar
许瑞 committed
290
                    if i_area >= object_area:
291
                        ret = min(float('inf'), dis[i][object_idx])
292

许瑞's avatar
许瑞 committed
293
294
            return ret

blue's avatar
blue committed
295
        def expand_bbbox(idxes):
296
297
298
299
            x0s = [all_bboxes[idx]['bbox'][0] for idx in idxes]
            y0s = [all_bboxes[idx]['bbox'][1] for idx in idxes]
            x1s = [all_bboxes[idx]['bbox'][2] for idx in idxes]
            y1s = [all_bboxes[idx]['bbox'][3] for idx in idxes]
blue's avatar
blue committed
300
301
            return min(x0s), min(y0s), max(x1s), max(y1s)

liukaiwen's avatar
liukaiwen committed
302
303
304
        subjects = self.__reduct_overlap(
            list(
                map(
305
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
306
                    filter(
307
308
                        lambda x: x['category_id'] == subject_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
309
310
311
312
313
314
315
316
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
317
                    lambda x: {'bbox': x['bbox'], 'score': x['score']},
liukaiwen's avatar
liukaiwen committed
318
                    filter(
319
320
                        lambda x: x['category_id'] == object_category_id,
                        self.__model_list[page_no]['layout_dets'],
liukaiwen's avatar
liukaiwen committed
321
322
323
324
325
326
                    ),
                )
            )
        )
        subject_object_relation_map = {}

许瑞's avatar
许瑞 committed
327
        subjects.sort(
328
            key=lambda x: x['bbox'][0] ** 2 + x['bbox'][1] ** 2
许瑞's avatar
许瑞 committed
329
        )  # get the distance !
liukaiwen's avatar
liukaiwen committed
330
331
332
333

        all_bboxes = []

        for v in subjects:
许瑞's avatar
许瑞 committed
334
335
            all_bboxes.append(
                {
336
337
338
                    'category_id': subject_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
339
340
                }
            )
liukaiwen's avatar
liukaiwen committed
341
342

        for v in objects:
许瑞's avatar
许瑞 committed
343
344
            all_bboxes.append(
                {
345
346
347
                    'category_id': object_category_id,
                    'bbox': v['bbox'],
                    'score': v['score'],
许瑞's avatar
许瑞 committed
348
349
                }
            )
liukaiwen's avatar
liukaiwen committed
350
351
352
353
354
355
356

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
357
358
                    all_bboxes[i]['category_id'] == subject_category_id
                    and all_bboxes[j]['category_id'] == subject_category_id
liukaiwen's avatar
liukaiwen committed
359
360
361
                ):
                    continue

362
363
364
365
366
367
368
369
370
                subject_idx, object_idx = i, j
                if all_bboxes[j]['category_id'] == subject_category_id:
                    subject_idx, object_idx = j, i

                if search_overlap_between_boxes(subject_idx, object_idx) >= MERGE_BOX_OVERLAP_AREA_RATIO:
                    dis[i][j] = float('inf')
                    dis[j][i] = dis[i][j]
                    continue

371
                dis[i][j] = self._bbox_distance(all_bboxes[subject_idx]['bbox'], all_bboxes[object_idx]['bbox'])
liukaiwen's avatar
liukaiwen committed
372
373
374
375
376
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
377
            if all_bboxes[i]['category_id'] != subject_category_id:
liukaiwen's avatar
liukaiwen committed
378
379
380
381
382
383
384
385
386
387
388
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
389
                                all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
390
391
392
393
394
395
396
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
397
                    all_bboxes[j]['category_id'] != object_category_id
398
399
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
400
401
                ):
                    continue
blue's avatar
blue committed
402
                left, right, _, _ = bbox_relative_pos(
403
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
blue's avatar
blue committed
404
                )  # 由  pos_flag_count 相关逻辑保证本段逻辑准确性
许瑞's avatar
许瑞 committed
405
                if left or right:
406
                    one_way_dis = all_bboxes[i]['bbox'][2] - all_bboxes[i]['bbox'][0]
许瑞's avatar
许瑞 committed
407
                else:
408
                    one_way_dis = all_bboxes[i]['bbox'][3] - all_bboxes[i]['bbox'][1]
许瑞's avatar
许瑞 committed
409
410
                if dis[i][j] > one_way_dis:
                    continue
liukaiwen's avatar
liukaiwen committed
411
412
413
414
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
415
416
417
418
                """
                bug: 离该subject 最近的 object 可能跨越了其它的 subject。
                比如 [this subect] [some sbuject] [the nearest object of subject]
                """
许瑞's avatar
许瑞 committed
419
                if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
许瑞's avatar
许瑞 committed
420

许瑞's avatar
许瑞 committed
421
422
                    candidates.append(arr[0][1])
                    seen.add(arr[0][1])
liukaiwen's avatar
liukaiwen committed
423
424
425
426
427
428
429
430
431
432

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
433
                                    all_bboxes[j]['bbox'], all_bboxes[k]['bbox']
liukaiwen's avatar
liukaiwen committed
434
435
436
437
438
439
440
441
442
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue

                    if (
443
                        all_bboxes[k]['category_id'] != object_category_id
444
445
446
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
许瑞's avatar
许瑞 committed
447
                        or dis[j][k] > dis[i][j]
liukaiwen's avatar
liukaiwen committed
448
449
                    ):
                        continue
许瑞's avatar
许瑞 committed
450

liukaiwen's avatar
liukaiwen committed
451
                    is_nearest = True
452
453
                    for ni in range(i + 1, N):
                        if ni in (j, k) or ni in used or ni in seen:
liukaiwen's avatar
liukaiwen committed
454
455
                            continue

456
                        if not float_gt(dis[ni][k], dis[j][k]):
liukaiwen's avatar
liukaiwen committed
457
458
459
460
                            is_nearest = False
                            break

                    if is_nearest:
blue's avatar
blue committed
461
                        nx0, ny0, nx1, ny1 = expand_bbbox(list(seen) + [k])
462
                        n_dis = bbox_distance(
463
464
                            all_bboxes[i]['bbox'], [nx0, ny0, nx1, ny1]
                        )
blue's avatar
blue committed
465
466
                        if float_gt(dis[i][j], n_dis):
                            continue
liukaiwen's avatar
liukaiwen committed
467
468
469
470
471
472
473
474
475
                        tmp.append(k)
                        seen.add(k)

                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
blue's avatar
blue committed
476
            ox0, oy0, ox1, oy1 = expand_bbbox(list(seen) + [i])
477
            ix0, iy0, ix1, iy1 = all_bboxes[i]['bbox']
liukaiwen's avatar
liukaiwen committed
478
479
480
481
482
483
484
485
486
487
488
489
490

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
许瑞's avatar
许瑞 committed
491
492
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
493
                            all_bboxes[idx]['bbox'], bbox
许瑞's avatar
许瑞 committed
494
495
496
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
497
498
499
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
500
501
502
503
                    embed_x0 = min([all_bboxes[idx]['bbox'][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]['bbox'][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]['bbox'][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]['bbox'][3] for idx in embed_arr])
liukaiwen's avatar
liukaiwen committed
504
505
506
507
508
509
510
511
512
513
514
515
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
许瑞's avatar
许瑞 committed
516
517
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
518
                            all_bboxes[j]['bbox'], caption_bbox
许瑞's avatar
许瑞 committed
519
520
521
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
522
523
524
525
526
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
527
528
529
                'subject_body': all_bboxes[i]['bbox'],
                'all': all_bboxes[i]['bbox'],
                'score': all_bboxes[i]['score'],
liukaiwen's avatar
liukaiwen committed
530
531
532
533
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
534
                    [all_bboxes[j]['bbox'][0] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
535
536
                )
                y0 = min(
537
                    [all_bboxes[j]['bbox'][1] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
538
539
                )
                x1 = max(
540
                    [all_bboxes[j]['bbox'][2] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
541
542
                )
                y1 = max(
543
                    [all_bboxes[j]['bbox'][3] for j in subject_object_relation_map[i]]
liukaiwen's avatar
liukaiwen committed
544
                )
545
546
547
548
549
550
                result['object_body'] = [x0, y0, x1, y1]
                result['all'] = [
                    min(x0, all_bboxes[i]['bbox'][0]),
                    min(y0, all_bboxes[i]['bbox'][1]),
                    max(x1, all_bboxes[i]['bbox'][2]),
                    max(y1, all_bboxes[i]['bbox'][3]),
liukaiwen's avatar
liukaiwen committed
551
552
553
554
555
556
557
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
558
                total_subject_object_dis += bbox_distance(
559
                    all_bboxes[i]['bbox'], all_bboxes[j]['bbox']
liukaiwen's avatar
liukaiwen committed
560
561
562
563
564
565
566
567
568
569
570
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
571
            if all_bboxes[i]['category_id'] != object_category_id or i in used:
liukaiwen's avatar
liukaiwen committed
572
573
574
575
                continue
            candidates = []
            for j in range(N):
                if (
576
                    all_bboxes[j]['category_id'] != subject_category_id
577
                    or j in with_caption_subject
liukaiwen's avatar
liukaiwen committed
578
579
580
581
582
583
584
585
586
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

blue's avatar
blue committed
587
    def get_imgs(self, page_no: int):
588
589
590
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
        with_footnotes, _ = self.__tie_up_category_by_distance(
            page_no, 3, CategoryId.ImageFootnote
blue's avatar
blue committed
591
        )
592
593
594
595
596
597
598
599
600
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
                'score': with_captions[i]['score'],
                'img_caption_bbox': with_captions[i].get('object_body', None),
                'img_body_bbox': with_captions[i]['subject_body'],
                'img_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
601
            }
602
603
604
605
606
607
608
609

            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
            ret.append(record)
        return ret
liukaiwen's avatar
liukaiwen committed
610
611

    def get_tables(
612
        self, page_no: int
liukaiwen's avatar
liukaiwen committed
613
614
615
616
617
618
619
620
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
621
622
623
624
                'score': with_captions[i]['score'],
                'table_caption_bbox': with_captions[i].get('object_body', None),
                'table_body_bbox': with_captions[i]['subject_body'],
                'table_footnote_bbox': with_footnotes[i].get('object_body', None),
liukaiwen's avatar
liukaiwen committed
625
626
            }

627
628
629
630
631
            x0 = min(with_captions[i]['all'][0], with_footnotes[i]['all'][0])
            y0 = min(with_captions[i]['all'][1], with_footnotes[i]['all'][1])
            x1 = max(with_captions[i]['all'][2], with_footnotes[i]['all'][2])
            y1 = max(with_captions[i]['all'][3], with_footnotes[i]['all'][3])
            record['bbox'] = [x0, y0, x1, y1]
liukaiwen's avatar
liukaiwen committed
632
633
634
635
            ret.append(record)
        return ret

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
636
        inline_equations = self.__get_blocks_by_type(
637
            ModelBlockTypeEnum.EMBEDDING.value, page_no, ['latex']
638
639
        )
        interline_equations = self.__get_blocks_by_type(
640
            ModelBlockTypeEnum.ISOLATED.value, page_no, ['latex']
641
642
643
644
        )
        interline_equations_blocks = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
        )
liukaiwen's avatar
liukaiwen committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        return inline_equations, interline_equations, interline_equations_blocks

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
        return blocks

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
        return blocks

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
        return blocks

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
        text_spans = []
        model_page_info = self.__model_list[page_no]
662
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
663
        for layout_det in layout_dets:
664
            if layout_det['category_id'] == '15':
liukaiwen's avatar
liukaiwen committed
665
                span = {
666
667
                    'bbox': layout_det['bbox'],
                    'content': layout_det['text'],
liukaiwen's avatar
liukaiwen committed
668
669
670
671
672
                }
                text_spans.append(span)
        return text_spans

    def get_all_spans(self, page_no: int) -> list:
673

674
675
676
677
678
679
        def remove_duplicate_spans(spans):
            new_spans = []
            for span in spans:
                if not any(span == existing_span for existing_span in new_spans):
                    new_spans.append(span)
            return new_spans
blue's avatar
blue committed
680

liukaiwen's avatar
liukaiwen committed
681
682
        all_spans = []
        model_page_info = self.__model_list[page_no]
683
        layout_dets = model_page_info['layout_dets']
liukaiwen's avatar
liukaiwen committed
684
685
686
        allow_category_id_list = [3, 5, 13, 14, 15]
        """当成span拼接的"""
        #  3: 'image', # 图片
687
        #  5: 'table',       # 表格
liukaiwen's avatar
liukaiwen committed
688
689
690
691
        #  13: 'inline_equation',     # 行内公式
        #  14: 'interline_equation',      # 行间公式
        #  15: 'text',      # ocr识别文本
        for layout_det in layout_dets:
692
            category_id = layout_det['category_id']
liukaiwen's avatar
liukaiwen committed
693
            if category_id in allow_category_id_list:
694
                span = {'bbox': layout_det['bbox'], 'score': layout_det['score']}
liukaiwen's avatar
liukaiwen committed
695
                if category_id == 3:
696
                    span['type'] = ContentType.Image
liukaiwen's avatar
liukaiwen committed
697
                elif category_id == 5:
698
                    # 获取table模型结果
699
700
                    latex = layout_det.get('latex', None)
                    html = layout_det.get('html', None)
701
                    if latex:
702
                        span['latex'] = latex
703
                    elif html:
704
705
                        span['html'] = html
                    span['type'] = ContentType.Table
liukaiwen's avatar
liukaiwen committed
706
                elif category_id == 13:
707
708
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InlineEquation
liukaiwen's avatar
liukaiwen committed
709
                elif category_id == 14:
710
711
                    span['content'] = layout_det['latex']
                    span['type'] = ContentType.InterlineEquation
liukaiwen's avatar
liukaiwen committed
712
                elif category_id == 15:
713
714
                    span['content'] = layout_det['text']
                    span['type'] = ContentType.Text
liukaiwen's avatar
liukaiwen committed
715
                all_spans.append(span)
716
        return remove_duplicate_spans(all_spans)
liukaiwen's avatar
liukaiwen committed
717
718
719
720
721
722
723
724
725

    def get_page_size(self, page_no: int):  # 获取页面宽高
        # 获取当前页的page对象
        page = self.__docs[page_no]
        # 获取当前页的宽高
        page_w = page.rect.width
        page_h = page.rect.height
        return page_w, page_h

726
727
728
    def __get_blocks_by_type(
        self, type: int, page_no: int, extra_col: list[str] = []
    ) -> list:
liukaiwen's avatar
liukaiwen committed
729
730
        blocks = []
        for page_dict in self.__model_list:
731
732
733
            layout_dets = page_dict.get('layout_dets', [])
            page_info = page_dict.get('page_info', {})
            page_number = page_info.get('page_no', -1)
liukaiwen's avatar
liukaiwen committed
734
735
736
            if page_no != page_number:
                continue
            for item in layout_dets:
737
738
                category_id = item.get('category_id', -1)
                bbox = item.get('bbox', None)
liukaiwen's avatar
liukaiwen committed
739

liukaiwen's avatar
liukaiwen committed
740
                if category_id == type:
741
                    block = {
742
743
                        'bbox': bbox,
                        'score': item.get('score'),
744
                    }
liukaiwen's avatar
liukaiwen committed
745
746
747
748
749
                    for col in extra_col:
                        block[col] = item.get(col, None)
                    blocks.append(block)
        return blocks

许瑞's avatar
许瑞 committed
750
751
752
    def get_model_list(self, page_no):
        return self.__model_list[page_no]

753

754
755
if __name__ == '__main__':
    drw = DiskReaderWriter(r'D:/project/20231108code-clean')
liukaiwen's avatar
liukaiwen committed
756
    if 0:
757
758
        pdf_file_path = r'linshixuqiu\19983-00.pdf'
        model_file_path = r'linshixuqiu\19983-00_new.json'
liukaiwen's avatar
liukaiwen committed
759
760
761
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
762
763
        write_path = r'D:\project\20231108code-clean\linshixuqiu\19983-00'
        img_bucket_path = 'imgs'
liukaiwen's avatar
liukaiwen committed
764
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
765
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
766
767
768
769
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
770
            drw.read('/opt/data/pdf/20240418/j.chroma.2009.03.042.json')
liukaiwen's avatar
liukaiwen committed
771
772
        )
        pdf_bytes = drw.read(
773
            '/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf', AbsReaderWriter.MODE_BIN
liukaiwen's avatar
liukaiwen committed
774
        )
775
        pdf_docs = fitz.open('pdf', pdf_bytes)
liukaiwen's avatar
liukaiwen committed
776
777
778
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))