magic_model.py 24 KB
Newer Older
liukaiwen's avatar
liukaiwen committed
1
2
import json
import math
kernel.h@qq.com's avatar
kernel.h@qq.com committed
3

liukaiwen's avatar
liukaiwen committed
4
5
from magic_pdf.libs.commons import fitz
from loguru import logger
kernel.h@qq.com's avatar
kernel.h@qq.com committed
6

liukaiwen's avatar
liukaiwen committed
7
8
9
10
11
12
from magic_pdf.libs.commons import join_path
from magic_pdf.libs.coordinate_transform import get_scale_ratio
from magic_pdf.libs.ocr_content_type import ContentType
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.libs.math import float_gt
13
14
15
16
17
from magic_pdf.libs.boxbase import (
    _is_in,
    bbox_relative_pos,
    bbox_distance,
    _is_part_overlap,
18
    calculate_overlap_area_in_bbox1_area_ratio, calculate_iou,
19
)
liukaiwen's avatar
liukaiwen committed
20
from magic_pdf.libs.ModelBlockTypeEnum import ModelBlockTypeEnum
liukaiwen's avatar
liukaiwen committed
21

22
CAPATION_OVERLAP_AREA_RATIO = 0.6
liukaiwen's avatar
liukaiwen committed
23

许瑞's avatar
许瑞 committed
24

liukaiwen's avatar
liukaiwen committed
25
class MagicModel:
kernel.h@qq.com's avatar
kernel.h@qq.com committed
26
27
    """
    每个函数没有得到元素的时候返回空list
liukaiwen's avatar
liukaiwen committed
28

kernel.h@qq.com's avatar
kernel.h@qq.com committed
29
    """
liukaiwen's avatar
liukaiwen committed
30
31
32

    def __fix_axis(self):
        for model_page_info in self.__model_list:
33
            need_remove_list = []
liukaiwen's avatar
liukaiwen committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
            page_no = model_page_info["page_info"]["page_no"]
            horizontal_scale_ratio, vertical_scale_ratio = get_scale_ratio(
                model_page_info, self.__docs[page_no]
            )
            layout_dets = model_page_info["layout_dets"]
            for layout_det in layout_dets:
                x0, y0, _, _, x1, y1, _, _ = layout_det["poly"]
                bbox = [
                    int(x0 / horizontal_scale_ratio),
                    int(y0 / vertical_scale_ratio),
                    int(x1 / horizontal_scale_ratio),
                    int(y1 / vertical_scale_ratio),
                ]
                layout_det["bbox"] = bbox
48
49
                # 删除高度或者宽度小于等于0的spans
                if bbox[2] - bbox[0] <= 0 or bbox[3] - bbox[1] <= 0:
liukaiwen's avatar
liukaiwen committed
50
51
52
53
                    need_remove_list.append(layout_det)
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

54
    def __fix_by_remove_low_confidence(self):
55
56
57
58
        for model_page_info in self.__model_list:
            need_remove_list = []
            layout_dets = model_page_info["layout_dets"]
            for layout_det in layout_dets:
赵小蒙's avatar
赵小蒙 committed
59
                if layout_det["score"] <= 0.05:
60
61
62
63
64
                    need_remove_list.append(layout_det)
                else:
                    continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)
liukaiwen's avatar
liukaiwen committed
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def __fix_by_remove_high_iou_and_low_confidence(self):
        for model_page_info in self.__model_list:
            need_remove_list = []
            layout_dets = model_page_info["layout_dets"]
            for layout_det1 in layout_dets:
                for layout_det2 in layout_dets:
                    if layout_det1 == layout_det2:
                        continue
                    if layout_det1["category_id"] in [0,1,2,3,4,5,6,7,8,9] and layout_det2["category_id"] in [0,1,2,3,4,5,6,7,8,9]:
                        if calculate_iou(layout_det1['bbox'], layout_det2['bbox']) > 0.9:
                            if layout_det1['score'] < layout_det2['score']:
                                layout_det_need_remove = layout_det1
                            else:
                                layout_det_need_remove = layout_det2

                            if layout_det_need_remove not in need_remove_list:
                                need_remove_list.append(layout_det_need_remove)
                        else:
                            continue
                    else:
                        continue
            for need_remove in need_remove_list:
                layout_dets.remove(need_remove)

liukaiwen's avatar
liukaiwen committed
90
    def __init__(self, model_list: list, docs: fitz.Document):
kernel.h@qq.com's avatar
kernel.h@qq.com committed
91
        self.__model_list = model_list
liukaiwen's avatar
liukaiwen committed
92
        self.__docs = docs
kernel.h@qq.com's avatar
kernel.h@qq.com committed
93
        self.__fix_axis()
94
95
        self.__fix_by_remove_low_confidence()
        self.__fix_by_remove_high_iou_and_low_confidence()
liukaiwen's avatar
liukaiwen committed
96
97
98
99
100
101
102
103

    def __reduct_overlap(self, bboxes):
        N = len(bboxes)
        keep = [True] * N
        for i in range(N):
            for j in range(N):
                if i == j:
                    continue
许瑞's avatar
许瑞 committed
104
                if _is_in(bboxes[i]["bbox"], bboxes[j]["bbox"]):
liukaiwen's avatar
liukaiwen committed
105
106
107
108
109
                    keep[i] = False

        return [bboxes[i] for i in range(N) if keep[i]]

    def __tie_up_category_by_distance(
110
        self, page_no, subject_category_id, object_category_id
liukaiwen's avatar
liukaiwen committed
111
112
113
114
115
    ):
        """
        假定每个 subject 最多有一个 object (可以有多个相邻的 object 合并为单个 object),每个 object 只能属于一个 subject
        """
        ret = []
116
        MAX_DIS_OF_POINT = 10**9 + 7
liukaiwen's avatar
liukaiwen committed
117

许瑞's avatar
许瑞 committed
118
119
120
121
122
123
124
125
126
127
        def expand_bbox(bbox1, bbox2):
            x0 = min(bbox1[0], bbox2[0])
            y0 = min(bbox1[1], bbox2[1])
            x1 = max(bbox1[2], bbox2[2])
            y1 = max(bbox1[3], bbox2[3])
            return [x0, y0, x1, y1]

        def get_bbox_area(bbox):
            return abs(bbox[2] - bbox[0]) * abs(bbox[3] - bbox[1])

许瑞's avatar
许瑞 committed
128
129
130
131
        # subject 和 object 的 bbox 会合并成一个大的 bbox (named: merged bbox)。 筛选出所有和 merged bbox 有 overlap 且 overlap 面积大于 object 的面积的 subjects。
        # 再求出筛选出的 subjects 和 object 的最短距离!
        def may_find_other_nearest_bbox(subject_idx, object_idx):
            ret = float("inf")
132

许瑞's avatar
许瑞 committed
133
134
135
136
137
138
139
140
141
142
143
144
            x0 = min(
                all_bboxes[subject_idx]["bbox"][0], all_bboxes[object_idx]["bbox"][0]
            )
            y0 = min(
                all_bboxes[subject_idx]["bbox"][1], all_bboxes[object_idx]["bbox"][1]
            )
            x1 = max(
                all_bboxes[subject_idx]["bbox"][2], all_bboxes[object_idx]["bbox"][2]
            )
            y1 = max(
                all_bboxes[subject_idx]["bbox"][3], all_bboxes[object_idx]["bbox"][3]
            )
许瑞's avatar
许瑞 committed
145

许瑞's avatar
许瑞 committed
146
147
148
149
150
            object_area = abs(
                all_bboxes[object_idx]["bbox"][2] - all_bboxes[object_idx]["bbox"][0]
            ) * abs(
                all_bboxes[object_idx]["bbox"][3] - all_bboxes[object_idx]["bbox"][1]
            )
许瑞's avatar
许瑞 committed
151
152

            for i in range(len(all_bboxes)):
许瑞's avatar
许瑞 committed
153
154
155
156
                if (
                    i == subject_idx
                    or all_bboxes[i]["category_id"] != subject_category_id
                ):
许瑞's avatar
许瑞 committed
157
                    continue
许瑞's avatar
许瑞 committed
158
159
160
                if _is_part_overlap([x0, y0, x1, y1], all_bboxes[i]["bbox"]) or _is_in(
                    all_bboxes[i]["bbox"], [x0, y0, x1, y1]
                ):
161

许瑞's avatar
许瑞 committed
162
163
164
                    i_area = abs(
                        all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
                    ) * abs(all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1])
许瑞's avatar
许瑞 committed
165
                    if i_area >= object_area:
许瑞's avatar
许瑞 committed
166
                        ret = min(float("inf"), dis[i][object_idx])
167

许瑞's avatar
许瑞 committed
168
169
            return ret

liukaiwen's avatar
liukaiwen committed
170
171
172
        subjects = self.__reduct_overlap(
            list(
                map(
许瑞's avatar
许瑞 committed
173
                    lambda x: {"bbox": x["bbox"], "score": x["score"]},
liukaiwen's avatar
liukaiwen committed
174
175
176
177
178
179
180
181
182
183
184
                    filter(
                        lambda x: x["category_id"] == subject_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )

        objects = self.__reduct_overlap(
            list(
                map(
许瑞's avatar
许瑞 committed
185
                    lambda x: {"bbox": x["bbox"], "score": x["score"]},
liukaiwen's avatar
liukaiwen committed
186
187
188
189
190
191
192
193
194
                    filter(
                        lambda x: x["category_id"] == object_category_id,
                        self.__model_list[page_no]["layout_dets"],
                    ),
                )
            )
        )
        subject_object_relation_map = {}

许瑞's avatar
许瑞 committed
195
196
197
        subjects.sort(
            key=lambda x: x["bbox"][0] ** 2 + x["bbox"][1] ** 2
        )  # get the distance !
liukaiwen's avatar
liukaiwen committed
198
199
200
201

        all_bboxes = []

        for v in subjects:
许瑞's avatar
许瑞 committed
202
203
204
205
206
207
208
            all_bboxes.append(
                {
                    "category_id": subject_category_id,
                    "bbox": v["bbox"],
                    "score": v["score"],
                }
            )
liukaiwen's avatar
liukaiwen committed
209
210

        for v in objects:
许瑞's avatar
许瑞 committed
211
212
213
214
215
216
217
            all_bboxes.append(
                {
                    "category_id": object_category_id,
                    "bbox": v["bbox"],
                    "score": v["score"],
                }
            )
liukaiwen's avatar
liukaiwen committed
218
219
220
221
222
223
224

        N = len(all_bboxes)
        dis = [[MAX_DIS_OF_POINT] * N for _ in range(N)]

        for i in range(N):
            for j in range(i):
                if (
225
226
                    all_bboxes[i]["category_id"] == subject_category_id
                    and all_bboxes[j]["category_id"] == subject_category_id
liukaiwen's avatar
liukaiwen committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                ):
                    continue

                dis[i][j] = bbox_distance(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"])
                dis[j][i] = dis[i][j]

        used = set()
        for i in range(N):
            # 求第 i 个 subject 所关联的 object
            if all_bboxes[i]["category_id"] != subject_category_id:
                continue
            seen = set()
            candidates = []
            arr = []
            for j in range(N):

                pos_flag_count = sum(
                    list(
                        map(
                            lambda x: 1 if x else 0,
                            bbox_relative_pos(
                                all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                            ),
                        )
                    )
                )
                if pos_flag_count > 1:
                    continue
                if (
256
257
258
                    all_bboxes[j]["category_id"] != object_category_id
                    or j in used
                    or dis[i][j] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
259
260
                ):
                    continue
许瑞's avatar
许瑞 committed
261
262
263
264
265
266
267
                left, right, _, _ = bbox_relative_pos(all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]) # 由  pos_flag_count 相关逻辑保证本段逻辑准确性
                if left or right:
                    one_way_dis = all_bboxes[i]["bbox"][2] - all_bboxes[i]["bbox"][0]
                else:
                    one_way_dis = all_bboxes[i]["bbox"][3] - all_bboxes[i]["bbox"][1]
                if dis[i][j] > one_way_dis:
                    continue
liukaiwen's avatar
liukaiwen committed
268
269
270
271
                arr.append((dis[i][j], j))

            arr.sort(key=lambda x: x[0])
            if len(arr) > 0:
许瑞's avatar
许瑞 committed
272
                # bug: 离该subject 最近的 object 可能跨越了其它的 subject 。比如 [this subect] [some sbuject] [the nearest objec of subject]
许瑞's avatar
许瑞 committed
273
                if may_find_other_nearest_bbox(i, arr[0][1]) >= arr[0][0]:
许瑞's avatar
许瑞 committed
274

许瑞's avatar
许瑞 committed
275
276
                    candidates.append(arr[0][1])
                    seen.add(arr[0][1])
liukaiwen's avatar
liukaiwen committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

            # 已经获取初始种子
            for j in set(candidates):
                tmp = []
                for k in range(i + 1, N):
                    pos_flag_count = sum(
                        list(
                            map(
                                lambda x: 1 if x else 0,
                                bbox_relative_pos(
                                    all_bboxes[j]["bbox"], all_bboxes[k]["bbox"]
                                ),
                            )
                        )
                    )

                    if pos_flag_count > 1:
                        continue

                    if (
297
298
299
300
                        all_bboxes[k]["category_id"] != object_category_id
                        or k in used
                        or k in seen
                        or dis[j][k] == MAX_DIS_OF_POINT
liukaiwen's avatar
liukaiwen committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
                    ):
                        continue
                    is_nearest = True
                    for l in range(i + 1, N):
                        if l in (j, k) or l in used or l in seen:
                            continue

                        if not float_gt(dis[l][k], dis[j][k]):
                            is_nearest = False
                            break

                    if is_nearest:
                        tmp.append(k)
                        seen.add(k)

                candidates = tmp
                if len(candidates) == 0:
                    break

            # 已经获取到某个 figure 下所有的最靠近的 captions,以及最靠近这些 captions 的 captions 。
            # 先扩一下 bbox,
            x0s = [all_bboxes[idx]["bbox"][0] for idx in seen] + [
                all_bboxes[i]["bbox"][0]
            ]
            y0s = [all_bboxes[idx]["bbox"][1] for idx in seen] + [
                all_bboxes[i]["bbox"][1]
            ]
            x1s = [all_bboxes[idx]["bbox"][2] for idx in seen] + [
                all_bboxes[i]["bbox"][2]
            ]
            y1s = [all_bboxes[idx]["bbox"][3] for idx in seen] + [
                all_bboxes[i]["bbox"][3]
            ]

            ox0, oy0, ox1, oy1 = min(x0s), min(y0s), max(x1s), max(y1s)
            ix0, iy0, ix1, iy1 = all_bboxes[i]["bbox"]

            # 分成了 4 个截取空间,需要计算落在每个截取空间下 objects 合并后占据的矩形面积
            caption_poses = [
                [ox0, oy0, ix0, oy1],
                [ox0, oy0, ox1, iy0],
                [ox0, iy1, ox1, oy1],
                [ix1, oy0, ox1, oy1],
            ]

            caption_areas = []
            for bbox in caption_poses:
                embed_arr = []
                for idx in seen:
许瑞's avatar
许瑞 committed
350
351
352
353
354
355
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
                            all_bboxes[idx]["bbox"], bbox
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
                        embed_arr.append(idx)

                if len(embed_arr) > 0:
                    embed_x0 = min([all_bboxes[idx]["bbox"][0] for idx in embed_arr])
                    embed_y0 = min([all_bboxes[idx]["bbox"][1] for idx in embed_arr])
                    embed_x1 = max([all_bboxes[idx]["bbox"][2] for idx in embed_arr])
                    embed_y1 = max([all_bboxes[idx]["bbox"][3] for idx in embed_arr])
                    caption_areas.append(
                        int(abs(embed_x1 - embed_x0) * abs(embed_y1 - embed_y0))
                    )
                else:
                    caption_areas.append(0)

            subject_object_relation_map[i] = []
            if max(caption_areas) > 0:
                max_area_idx = caption_areas.index(max(caption_areas))
                caption_bbox = caption_poses[max_area_idx]

                for j in seen:
许瑞's avatar
许瑞 committed
375
376
377
378
379
380
                    if (
                        calculate_overlap_area_in_bbox1_area_ratio(
                            all_bboxes[j]["bbox"], caption_bbox
                        )
                        > CAPATION_OVERLAP_AREA_RATIO
                    ):
liukaiwen's avatar
liukaiwen committed
381
382
383
384
385
386
387
                        used.add(j)
                        subject_object_relation_map[i].append(j)

        for i in sorted(subject_object_relation_map.keys()):
            result = {
                "subject_body": all_bboxes[i]["bbox"],
                "all": all_bboxes[i]["bbox"],
许瑞's avatar
许瑞 committed
388
                "score": all_bboxes[i]["score"],
liukaiwen's avatar
liukaiwen committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            }

            if len(subject_object_relation_map[i]) > 0:
                x0 = min(
                    [all_bboxes[j]["bbox"][0] for j in subject_object_relation_map[i]]
                )
                y0 = min(
                    [all_bboxes[j]["bbox"][1] for j in subject_object_relation_map[i]]
                )
                x1 = max(
                    [all_bboxes[j]["bbox"][2] for j in subject_object_relation_map[i]]
                )
                y1 = max(
                    [all_bboxes[j]["bbox"][3] for j in subject_object_relation_map[i]]
                )
                result["object_body"] = [x0, y0, x1, y1]
                result["all"] = [
                    min(x0, all_bboxes[i]["bbox"][0]),
                    min(y0, all_bboxes[i]["bbox"][1]),
                    max(x1, all_bboxes[i]["bbox"][2]),
                    max(y1, all_bboxes[i]["bbox"][3]),
                ]
            ret.append(result)

        total_subject_object_dis = 0
        # 计算已经配对的 distance 距离
        for i in subject_object_relation_map.keys():
            for j in subject_object_relation_map[i]:
                total_subject_object_dis += bbox_distance(
                    all_bboxes[i]["bbox"], all_bboxes[j]["bbox"]
                )

        # 计算未匹配的 subject 和 object 的距离(非精确版)
        with_caption_subject = set(
            [
                key
                for key in subject_object_relation_map.keys()
                if len(subject_object_relation_map[i]) > 0
            ]
        )
        for i in range(N):
            if all_bboxes[i]["category_id"] != object_category_id or i in used:
                continue
            candidates = []
            for j in range(N):
                if (
435
436
                    all_bboxes[j]["category_id"] != subject_category_id
                    or j in with_caption_subject
liukaiwen's avatar
liukaiwen committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
                ):
                    continue
                candidates.append((dis[i][j], j))
            if len(candidates) > 0:
                candidates.sort(key=lambda x: x[0])
                total_subject_object_dis += candidates[0][1]
                with_caption_subject.add(j)
        return ret, total_subject_object_dis

    def get_imgs(self, page_no: int):  # @许瑞
        records, _ = self.__tie_up_category_by_distance(page_no, 3, 4)
        return [
            {
                "bbox": record["all"],
                "img_body_bbox": record["subject_body"],
                "img_caption_bbox": record.get("object_body", None),
许瑞's avatar
许瑞 committed
453
                "score": record["score"],
liukaiwen's avatar
liukaiwen committed
454
455
456
457
458
            }
            for record in records
        ]

    def get_tables(
459
        self, page_no: int
liukaiwen's avatar
liukaiwen committed
460
461
462
463
464
465
466
467
    ) -> list:  # 3个坐标, caption, table主体,table-note
        with_captions, _ = self.__tie_up_category_by_distance(page_no, 5, 6)
        with_footnotes, _ = self.__tie_up_category_by_distance(page_no, 5, 7)
        ret = []
        N, M = len(with_captions), len(with_footnotes)
        assert N == M
        for i in range(N):
            record = {
许瑞's avatar
许瑞 committed
468
                "score": with_captions[i]["score"],
liukaiwen's avatar
liukaiwen committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                "table_caption_bbox": with_captions[i].get("object_body", None),
                "table_body_bbox": with_captions[i]["subject_body"],
                "table_footnote_bbox": with_footnotes[i].get("object_body", None),
            }

            x0 = min(with_captions[i]["all"][0], with_footnotes[i]["all"][0])
            y0 = min(with_captions[i]["all"][1], with_footnotes[i]["all"][1])
            x1 = max(with_captions[i]["all"][2], with_footnotes[i]["all"][2])
            y1 = max(with_captions[i]["all"][3], with_footnotes[i]["all"][3])
            record["bbox"] = [x0, y0, x1, y1]
            ret.append(record)
        return ret

    def get_equations(self, page_no: int) -> list:  # 有坐标,也有字
483
484
485
486
487
488
489
490
491
        inline_equations = self.__get_blocks_by_type(
            ModelBlockTypeEnum.EMBEDDING.value, page_no, ["latex"]
        )
        interline_equations = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATED.value, page_no, ["latex"]
        )
        interline_equations_blocks = self.__get_blocks_by_type(
            ModelBlockTypeEnum.ISOLATE_FORMULA.value, page_no
        )
liukaiwen's avatar
liukaiwen committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
        return inline_equations, interline_equations, interline_equations_blocks

    def get_discarded(self, page_no: int) -> list:  # 自研模型,只有坐标
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.ABANDON.value, page_no)
        return blocks

    def get_text_blocks(self, page_no: int) -> list:  # 自研模型搞的,只有坐标,没有字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.PLAIN_TEXT.value, page_no)
        return blocks

    def get_title_blocks(self, page_no: int) -> list:  # 自研模型,只有坐标,没字
        blocks = self.__get_blocks_by_type(ModelBlockTypeEnum.TITLE.value, page_no)
        return blocks

    def get_ocr_text(self, page_no: int) -> list:  # paddle 搞的,有字也有坐标
        text_spans = []
        model_page_info = self.__model_list[page_no]
        layout_dets = model_page_info["layout_dets"]
        for layout_det in layout_dets:
            if layout_det["category_id"] == "15":
                span = {
513
                    "bbox": layout_det["bbox"],
liukaiwen's avatar
liukaiwen committed
514
515
516
517
518
519
                    "content": layout_det["text"],
                }
                text_spans.append(span)
        return text_spans

    def get_all_spans(self, page_no: int) -> list:
520
521
522
523
524
525
        def remove_duplicate_spans(spans):
            new_spans = []
            for span in spans:
                if not any(span == existing_span for existing_span in new_spans):
                    new_spans.append(span)
            return new_spans
liukaiwen's avatar
liukaiwen committed
526
527
528
529
530
531
        all_spans = []
        model_page_info = self.__model_list[page_no]
        layout_dets = model_page_info["layout_dets"]
        allow_category_id_list = [3, 5, 13, 14, 15]
        """当成span拼接的"""
        #  3: 'image', # 图片
532
        #  5: 'table',       # 表格
liukaiwen's avatar
liukaiwen committed
533
534
535
536
537
538
        #  13: 'inline_equation',     # 行内公式
        #  14: 'interline_equation',      # 行间公式
        #  15: 'text',      # ocr识别文本
        for layout_det in layout_dets:
            category_id = layout_det["category_id"]
            if category_id in allow_category_id_list:
539
540
541
542
                span = {
                    "bbox": layout_det["bbox"],
                    "score": layout_det["score"]
                }
liukaiwen's avatar
liukaiwen committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
                if category_id == 3:
                    span["type"] = ContentType.Image
                elif category_id == 5:
                    span["type"] = ContentType.Table
                elif category_id == 13:
                    span["content"] = layout_det["latex"]
                    span["type"] = ContentType.InlineEquation
                elif category_id == 14:
                    span["content"] = layout_det["latex"]
                    span["type"] = ContentType.InterlineEquation
                elif category_id == 15:
                    span["content"] = layout_det["text"]
                    span["type"] = ContentType.Text
                all_spans.append(span)
557
        return remove_duplicate_spans(all_spans)
liukaiwen's avatar
liukaiwen committed
558
559
560
561
562
563
564
565
566

    def get_page_size(self, page_no: int):  # 获取页面宽高
        # 获取当前页的page对象
        page = self.__docs[page_no]
        # 获取当前页的宽高
        page_w = page.rect.width
        page_h = page.rect.height
        return page_w, page_h

567
568
569
    def __get_blocks_by_type(
        self, type: int, page_no: int, extra_col: list[str] = []
    ) -> list:
liukaiwen's avatar
liukaiwen committed
570
571
572
573
574
575
576
577
578
579
580
        blocks = []
        for page_dict in self.__model_list:
            layout_dets = page_dict.get("layout_dets", [])
            page_info = page_dict.get("page_info", {})
            page_number = page_info.get("page_no", -1)
            if page_no != page_number:
                continue
            for item in layout_dets:
                category_id = item.get("category_id", -1)
                bbox = item.get("bbox", None)

liukaiwen's avatar
liukaiwen committed
581
                if category_id == type:
582
583
584
585
                    block = {
                        "bbox": bbox,
                        "score": item.get("score"),
                    }
liukaiwen's avatar
liukaiwen committed
586
587
588
589
590
                    for col in extra_col:
                        block[col] = item.get(col, None)
                    blocks.append(block)
        return blocks

许瑞's avatar
许瑞 committed
591
592
593
    def get_model_list(self, page_no):
        return self.__model_list[page_no]

594
595


liukaiwen's avatar
liukaiwen committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
if __name__ == "__main__":
    drw = DiskReaderWriter(r"D:/project/20231108code-clean")
    if 0:
        pdf_file_path = r"linshixuqiu\19983-00.pdf"
        model_file_path = r"linshixuqiu\19983-00_new.json"
        pdf_bytes = drw.read(pdf_file_path, AbsReaderWriter.MODE_BIN)
        model_json_txt = drw.read(model_file_path, AbsReaderWriter.MODE_TXT)
        model_list = json.loads(model_json_txt)
        write_path = r"D:\project\20231108code-clean\linshixuqiu\19983-00"
        img_bucket_path = "imgs"
        img_writer = DiskReaderWriter(join_path(write_path, img_bucket_path))
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)

    if 1:
        model_list = json.loads(
            drw.read("/opt/data/pdf/20240418/j.chroma.2009.03.042.json")
        )
        pdf_bytes = drw.read(
            "/opt/data/pdf/20240418/j.chroma.2009.03.042.pdf", AbsReaderWriter.MODE_BIN
        )
        pdf_docs = fitz.open("pdf", pdf_bytes)
        magic_model = MagicModel(model_list, pdf_docs)
        for i in range(7):
            print(magic_model.get_imgs(i))