"include/ck/ck.hpp" did not exist on "3406a1148adf283f31a345549b63de633a4ff61e"
batch_analyze.py 11.1 KB
Newer Older
1
2
3
import time
import cv2
from loguru import logger
4
from tqdm import tqdm
5
6

from magic_pdf.config.constants import MODEL_NAME
7
from magic_pdf.model.sub_modules.model_init import AtomModelSingleton
8
from magic_pdf.model.sub_modules.model_utils import (
icecraft's avatar
icecraft committed
9
    clean_vram, crop_img, get_res_list_from_layout_res)
10
from magic_pdf.model.sub_modules.ocr.paddleocr2pytorch.ocr_utils import (
icecraft's avatar
icecraft committed
11
    get_adjusted_mfdetrec_res, get_ocr_result_list)
12

13
YOLO_LAYOUT_BASE_BATCH_SIZE = 1
14
15
16
17
18
MFD_BASE_BATCH_SIZE = 1
MFR_BASE_BATCH_SIZE = 16


class BatchAnalyze:
19
20
    def __init__(self, model_manager, batch_ratio: int, show_log, layout_model, formula_enable, table_enable):
        self.model_manager = model_manager
21
        self.batch_ratio = batch_ratio
22
23
24
25
26
27
28
29
30
        self.show_log = show_log
        self.layout_model = layout_model
        self.formula_enable = formula_enable
        self.table_enable = table_enable

    def __call__(self, images_with_extra_info: list) -> list:
        if len(images_with_extra_info) == 0:
            return []
    
31
        images_layout_res = []
32
        layout_start_time = time.time()
33
34
35
36
37
        _, fst_ocr, fst_lang = images_with_extra_info[0]
        self.model = self.model_manager.get_model(fst_ocr, self.show_log, fst_lang, self.layout_model, self.formula_enable, self.table_enable)

        images = [image for image, _, _ in images_with_extra_info]

38
39
40
41
42
43
44
        if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            for image in images:
                layout_res = self.model.layout_model(image, ignore_catids=[])
                images_layout_res.append(layout_res)
        elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
45
46
            layout_images = []
            for image_index, image in enumerate(images):
47
                layout_images.append(image)
48

49
            images_layout_res += self.model.layout_model.batch_predict(
50
51
                # layout_images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
                layout_images, YOLO_LAYOUT_BASE_BATCH_SIZE
52
53
            )

54
55
56
        # logger.info(
        #     f'layout time: {round(time.time() - layout_start_time, 2)}, image num: {len(images)}'
        # )
57

58
59
        if self.model.apply_formula:
            # 公式检测
60
            mfd_start_time = time.time()
61
            images_mfd_res = self.model.mfd_model.batch_predict(
62
63
                # images, self.batch_ratio * MFD_BASE_BATCH_SIZE
                images, MFD_BASE_BATCH_SIZE
64
            )
65
66
67
            # logger.info(
            #     f'mfd time: {round(time.time() - mfd_start_time, 2)}, image num: {len(images)}'
            # )
68
69

            # 公式识别
70
            mfr_start_time = time.time()
71
72
73
74
75
            images_formula_list = self.model.mfr_model.batch_predict(
                images_mfd_res,
                images,
                batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
            )
76
            mfr_count = 0
77
78
            for image_index in range(len(images)):
                images_layout_res[image_index] += images_formula_list[image_index]
79
                mfr_count += len(images_formula_list[image_index])
80
81
82
            # logger.info(
            #     f'mfr time: {round(time.time() - mfr_start_time, 2)}, image num: {mfr_count}'
            # )
83
84

        # 清理显存
85
        # clean_vram(self.model.device, vram_threshold=8)
86

87
88
        ocr_res_list_all_page = []
        table_res_list_all_page = []
89
        for index in range(len(images)):
90
            _, ocr_enable, _lang = images_with_extra_info[index]
91
            layout_res = images_layout_res[index]
92
            np_array_img = images[index]
93
94
95
96

            ocr_res_list, table_res_list, single_page_mfdetrec_res = (
                get_res_list_from_layout_res(layout_res)
            )
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

            ocr_res_list_all_page.append({'ocr_res_list':ocr_res_list,
                                          'lang':_lang,
                                          'ocr_enable':ocr_enable,
                                          'np_array_img':np_array_img,
                                          'single_page_mfdetrec_res':single_page_mfdetrec_res,
                                          'layout_res':layout_res,
                                          })
            table_res_list_all_page.append({'table_res_list':table_res_list,
                                            'lang':_lang,
                                            'np_array_img':np_array_img,
                                          })

        # 文本框检测
        det_start = time.time()
        det_count = 0
        # for ocr_res_list_dict in ocr_res_list_all_page:
        for ocr_res_list_dict in tqdm(ocr_res_list_all_page, desc="OCR-det Predict"):
115
            # Process each area that requires OCR processing
116
117
118
119
120
121
122
123
124
125
            _lang = ocr_res_list_dict['lang']
            # Get OCR results for this language's images
            atom_model_manager = AtomModelSingleton()
            ocr_model = atom_model_manager.get_atom_model(
                atom_model_name='ocr',
                ocr_show_log=False,
                det_db_box_thresh=0.3,
                lang=_lang
            )
            for res in ocr_res_list_dict['ocr_res_list']:
126
                new_image, useful_list = crop_img(
127
                    res, ocr_res_list_dict['np_array_img'], crop_paste_x=50, crop_paste_y=50
128
129
                )
                adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
130
                    ocr_res_list_dict['single_page_mfdetrec_res'], useful_list
131
132
                )

133
                # OCR-det
134
                new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
135
                ocr_res = ocr_model.ocr(
136
137
                    new_image, mfd_res=adjusted_mfdetrec_res, rec=False
                )[0]
138
139
140

                # Integration results
                if ocr_res:
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
                    ocr_result_list = get_ocr_result_list(ocr_res, useful_list, ocr_res_list_dict['ocr_enable'], new_image, _lang)
                    ocr_res_list_dict['layout_res'].extend(ocr_result_list)
            det_count += len(ocr_res_list_dict['ocr_res_list'])
        # logger.info(f'ocr-det time: {round(time.time()-det_start, 2)}, image num: {det_count}')


        # 表格识别 table recognition
        if self.model.apply_table:
            table_start = time.time()
            table_count = 0
            # for table_res_list_dict in table_res_list_all_page:
            for table_res_list_dict in tqdm(table_res_list_all_page, desc="Table Predict"):
                _lang = table_res_list_dict['lang']
                atom_model_manager = AtomModelSingleton()
                ocr_engine = atom_model_manager.get_atom_model(
                    atom_model_name='ocr',
                    ocr_show_log=False,
                    det_db_box_thresh=0.5,
                    det_db_unclip_ratio=1.6,
                    lang=_lang
                )
                table_model = atom_model_manager.get_atom_model(
                    atom_model_name='table',
                    table_model_name='rapid_table',
                    table_model_path='',
                    table_max_time=400,
                    device='cpu',
                    ocr_engine=ocr_engine,
                    table_sub_model_name='slanet_plus'
                )
                for res in table_res_list_dict['table_res_list']:
                    new_image, _ = crop_img(res, table_res_list_dict['np_array_img'])
                    html_code, table_cell_bboxes, logic_points, elapse = table_model.predict(new_image)
174
175
176
                    # 判断是否返回正常
                    if html_code:
                        expected_ending = html_code.strip().endswith(
icecraft's avatar
icecraft committed
177
178
                            '</html>'
                        ) or html_code.strip().endswith('</table>')
179
                        if expected_ending:
icecraft's avatar
icecraft committed
180
                            res['html'] = html_code
181
182
                        else:
                            logger.warning(
icecraft's avatar
icecraft committed
183
                                'table recognition processing fails, not found expected HTML table end'
184
185
186
                            )
                    else:
                        logger.warning(
icecraft's avatar
icecraft committed
187
                            'table recognition processing fails, not get html return'
188
                        )
189
190
                table_count += len(table_res_list_dict['table_res_list'])
            # logger.info(f'table time: {round(time.time() - table_start, 2)}, image num: {table_count}')
191

192
193
194
195
        # Create dictionaries to store items by language
        need_ocr_lists_by_lang = {}  # Dict of lists for each language
        img_crop_lists_by_lang = {}  # Dict of lists for each language

196
197
198
        for layout_res in images_layout_res:
            for layout_res_item in layout_res:
                if layout_res_item['category_id'] in [15]:
199
200
201
202
203
204
205
206
207
208
209
210
211
                    if 'np_img' in layout_res_item and 'lang' in layout_res_item:
                        lang = layout_res_item['lang']

                        # Initialize lists for this language if not exist
                        if lang not in need_ocr_lists_by_lang:
                            need_ocr_lists_by_lang[lang] = []
                            img_crop_lists_by_lang[lang] = []

                        # Add to the appropriate language-specific lists
                        need_ocr_lists_by_lang[lang].append(layout_res_item)
                        img_crop_lists_by_lang[lang].append(layout_res_item['np_img'])

                        # Remove the fields after adding to lists
212
                        layout_res_item.pop('np_img')
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                        layout_res_item.pop('lang')


        if len(img_crop_lists_by_lang) > 0:

            # Process OCR by language
            rec_time = 0
            rec_start = time.time()
            total_processed = 0

            # Process each language separately
            for lang, img_crop_list in img_crop_lists_by_lang.items():
                if len(img_crop_list) > 0:
                    # Get OCR results for this language's images
227
228
229
230
231
232
233
                    atom_model_manager = AtomModelSingleton()
                    ocr_model = atom_model_manager.get_atom_model(
                        atom_model_name='ocr',
                        ocr_show_log=False,
                        det_db_box_thresh=0.3,
                        lang=lang
                    )
234
                    ocr_res_list = ocr_model.ocr(img_crop_list, det=False, tqdm_enable=True)[0]
235
236
237

                    # Verify we have matching counts
                    assert len(ocr_res_list) == len(
238
                        need_ocr_lists_by_lang[lang]), f'ocr_res_list: {len(ocr_res_list)}, need_ocr_list: {len(need_ocr_lists_by_lang[lang])} for lang: {lang}'
239
240

                    # Process OCR results for this language
241
                    for index, layout_res_item in enumerate(need_ocr_lists_by_lang[lang]):
242
243
244
245
246
                        ocr_text, ocr_score = ocr_res_list[index]
                        layout_res_item['text'] = ocr_text
                        layout_res_item['score'] = float(round(ocr_score, 2))

                    total_processed += len(img_crop_list)
247

248
            rec_time += time.time() - rec_start
249
            # logger.info(f'ocr-rec time: {round(rec_time, 2)}, total images processed: {total_processed}')
250
251
252



253
        return images_layout_res