batch_analyze.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
import time

import cv2
import numpy as np
import torch
from loguru import logger
from PIL import Image

from magic_pdf.config.constants import MODEL_NAME
10
11
12
13
14
# from magic_pdf.config.exceptions import CUDA_NOT_AVAILABLE
# from magic_pdf.data.dataset import Dataset
# from magic_pdf.libs.clean_memory import clean_memory
# from magic_pdf.libs.config_reader import get_device
# from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton
15
16
from magic_pdf.model.pdf_extract_kit import CustomPEKModel
from magic_pdf.model.sub_modules.model_utils import (
icecraft's avatar
icecraft committed
17
    clean_vram, crop_img, get_res_list_from_layout_res)
18
from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import (
icecraft's avatar
icecraft committed
19
    get_adjusted_mfdetrec_res, get_ocr_result_list)
20
# from magic_pdf.operators.models import InferenceResult
21
22
23
24
25
26
27
28
29
30
31
32

YOLO_LAYOUT_BASE_BATCH_SIZE = 4
MFD_BASE_BATCH_SIZE = 1
MFR_BASE_BATCH_SIZE = 16


class BatchAnalyze:
    def __init__(self, model: CustomPEKModel, batch_ratio: int):
        self.model = model
        self.batch_ratio = batch_ratio

    def __call__(self, images: list) -> list:
33
        images_layout_res = []
34
35

        layout_start_time = time.time()
36
37
38
39
40
41
42
        if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            for image in images:
                layout_res = self.model.layout_model(image, ignore_catids=[])
                images_layout_res.append(layout_res)
        elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
43
44
45
46
            layout_images = []
            modified_images = []
            for image_index, image in enumerate(images):
                pil_img = Image.fromarray(image)
47
48
49
50
51
52
53
54
55
56
                # width, height = pil_img.size
                # if height > width:
                #     input_res = {'poly': [0, 0, width, 0, width, height, 0, height]}
                #     new_image, useful_list = crop_img(
                #         input_res, pil_img, crop_paste_x=width // 2, crop_paste_y=0
                #     )
                #     layout_images.append(new_image)
                #     modified_images.append([image_index, useful_list])
                # else:
                layout_images.append(pil_img)
57

58
            images_layout_res += self.model.layout_model.batch_predict(
59
                layout_images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
60
61
            )

62
63
            for image_index, useful_list in modified_images:
                for res in images_layout_res[image_index]:
icecraft's avatar
icecraft committed
64
                    for i in range(len(res['poly'])):
65
                        if i % 2 == 0:
icecraft's avatar
icecraft committed
66
67
                            res['poly'][i] = (
                                res['poly'][i] - useful_list[0] + useful_list[2]
68
69
                            )
                        else:
icecraft's avatar
icecraft committed
70
71
                            res['poly'][i] = (
                                res['poly'][i] - useful_list[1] + useful_list[3]
72
73
                            )
        logger.info(
icecraft's avatar
icecraft committed
74
            f'layout time: {round(time.time() - layout_start_time, 2)}, image num: {len(images)}'
75
76
        )

77
78
        if self.model.apply_formula:
            # 公式检测
79
            mfd_start_time = time.time()
80
81
82
            images_mfd_res = self.model.mfd_model.batch_predict(
                images, self.batch_ratio * MFD_BASE_BATCH_SIZE
            )
83
            logger.info(
icecraft's avatar
icecraft committed
84
                f'mfd time: {round(time.time() - mfd_start_time, 2)}, image num: {len(images)}'
85
            )
86
87

            # 公式识别
88
            mfr_start_time = time.time()
89
90
91
92
93
            images_formula_list = self.model.mfr_model.batch_predict(
                images_mfd_res,
                images,
                batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
            )
94
            mfr_count = 0
95
96
            for image_index in range(len(images)):
                images_layout_res[image_index] += images_formula_list[image_index]
97
                mfr_count += len(images_formula_list[image_index])
98
            logger.info(
99
                f'mfr time: {round(time.time() - mfr_start_time, 2)}, image num: {mfr_count}'
100
            )
101
102
103
104

        # 清理显存
        clean_vram(self.model.device, vram_threshold=8)

105
106
107
108
        ocr_time = 0
        ocr_count = 0
        table_time = 0
        table_count = 0
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        # reference: magic_pdf/model/doc_analyze_by_custom_model.py:doc_analyze
        for index in range(len(images)):
            layout_res = images_layout_res[index]
            pil_img = Image.fromarray(images[index])

            ocr_res_list, table_res_list, single_page_mfdetrec_res = (
                get_res_list_from_layout_res(layout_res)
            )
            # ocr识别
            ocr_start = time.time()
            # Process each area that requires OCR processing
            for res in ocr_res_list:
                new_image, useful_list = crop_img(
                    res, pil_img, crop_paste_x=50, crop_paste_y=50
                )
                adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
                    single_page_mfdetrec_res, useful_list
                )

                # OCR recognition
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)

                if self.model.apply_ocr:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res
                    )[0]
                else:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res, rec=False
                    )[0]

                # Integration results
                if ocr_res:
                    ocr_result_list = get_ocr_result_list(ocr_res, useful_list)
                    layout_res.extend(ocr_result_list)
144
145
            ocr_time += time.time() - ocr_start
            ocr_count += len(ocr_res_list)
146
147
148
149
150
151
152
153
154
155
156

            # 表格识别 table recognition
            if self.model.apply_table:
                table_start = time.time()
                for res in table_res_list:
                    new_image, _ = crop_img(res, pil_img)
                    single_table_start_time = time.time()
                    html_code = None
                    if self.model.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
                        with torch.no_grad():
                            table_result = self.model.table_model.predict(
icecraft's avatar
icecraft committed
157
                                new_image, 'html'
158
159
160
161
162
163
                            )
                            if len(table_result) > 0:
                                html_code = table_result[0]
                    elif self.model.table_model_name == MODEL_NAME.TABLE_MASTER:
                        html_code = self.model.table_model.img2html(new_image)
                    elif self.model.table_model_name == MODEL_NAME.RAPID_TABLE:
164
                        html_code, table_cell_bboxes, logic_points, elapse = (
165
166
167
168
169
                            self.model.table_model.predict(new_image)
                        )
                    run_time = time.time() - single_table_start_time
                    if run_time > self.model.table_max_time:
                        logger.warning(
icecraft's avatar
icecraft committed
170
                            f'table recognition processing exceeds max time {self.model.table_max_time}s'
171
172
173
174
                        )
                    # 判断是否返回正常
                    if html_code:
                        expected_ending = html_code.strip().endswith(
icecraft's avatar
icecraft committed
175
176
                            '</html>'
                        ) or html_code.strip().endswith('</table>')
177
                        if expected_ending:
icecraft's avatar
icecraft committed
178
                            res['html'] = html_code
179
180
                        else:
                            logger.warning(
icecraft's avatar
icecraft committed
181
                                'table recognition processing fails, not found expected HTML table end'
182
183
184
                            )
                    else:
                        logger.warning(
icecraft's avatar
icecraft committed
185
                            'table recognition processing fails, not get html return'
186
                        )
187
188
189
190
                table_time += time.time() - table_start
                table_count += len(table_res_list)

        if self.model.apply_ocr:
icecraft's avatar
icecraft committed
191
            logger.info(f'ocr time: {round(ocr_time, 2)}, image num: {ocr_count}')
192
        else:
icecraft's avatar
icecraft committed
193
            logger.info(f'det time: {round(ocr_time, 2)}, image num: {ocr_count}')
194
        if self.model.apply_table:
icecraft's avatar
icecraft committed
195
            logger.info(f'table time: {round(table_time, 2)}, image num: {table_count}')
196

197
198
        return images_layout_res

199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# def doc_batch_analyze(
#     dataset: Dataset,
#     ocr: bool = False,
#     show_log: bool = False,
#     start_page_id=0,
#     end_page_id=None,
#     lang=None,
#     layout_model=None,
#     formula_enable=None,
#     table_enable=None,
#     batch_ratio: int | None = None,
# ) -> InferenceResult:
#     """Perform batch analysis on a document dataset.
#
#     Args:
#         dataset (Dataset): The dataset containing document pages to be analyzed.
#         ocr (bool, optional): Flag to enable OCR (Optical Character Recognition). Defaults to False.
#         show_log (bool, optional): Flag to enable logging. Defaults to False.
#         start_page_id (int, optional): The starting page ID for analysis. Defaults to 0.
#         end_page_id (int, optional): The ending page ID for analysis. Defaults to None, which means analyze till the last page.
#         lang (str, optional): Language for OCR. Defaults to None.
#         layout_model (optional): Layout model to be used for analysis. Defaults to None.
#         formula_enable (optional): Flag to enable formula detection. Defaults to None.
#         table_enable (optional): Flag to enable table detection. Defaults to None.
#         batch_ratio (int | None, optional): Ratio for batch processing. Defaults to None, which sets it to 1.
#
#     Raises:
#         CUDA_NOT_AVAILABLE: If CUDA is not available, raises an exception as batch analysis is not supported in CPU mode.
#
#     Returns:
#         InferenceResult: The result of the batch analysis containing the analyzed data and the dataset.
#     """
#
#     if not torch.cuda.is_available():
#         raise CUDA_NOT_AVAILABLE('batch analyze not support in CPU mode')
#
#     lang = None if lang == '' else lang
#     # TODO: auto detect batch size
#     batch_ratio = 1 if batch_ratio is None else batch_ratio
#     end_page_id = end_page_id if end_page_id else len(dataset)
#
#     model_manager = ModelSingleton()
#     custom_model: CustomPEKModel = model_manager.get_model(
#         ocr, show_log, lang, layout_model, formula_enable, table_enable
#     )
#     batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)
#
#     model_json = []
#
#     # batch analyze
#     images = []
#     for index in range(len(dataset)):
#         if start_page_id <= index <= end_page_id:
#             page_data = dataset.get_page(index)
#             img_dict = page_data.get_image()
#             images.append(img_dict['img'])
#     analyze_result = batch_model(images)
#
#     for index in range(len(dataset)):
#         page_data = dataset.get_page(index)
#         img_dict = page_data.get_image()
#         page_width = img_dict['width']
#         page_height = img_dict['height']
#         if start_page_id <= index <= end_page_id:
#             result = analyze_result.pop(0)
#         else:
#             result = []
#
#         page_info = {'page_no': index, 'height': page_height, 'width': page_width}
#         page_dict = {'layout_dets': result, 'page_info': page_info}
#         model_json.append(page_dict)
#
#     # TODO: clean memory when gpu memory is not enough
#     clean_memory_start_time = time.time()
#     clean_memory(get_device())
#     logger.info(f'clean memory time: {round(time.time() - clean_memory_start_time, 2)}')
#
#     return InferenceResult(model_json, dataset)