README.md 37.4 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
16

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
17
18
19
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
myhloli's avatar
myhloli committed
20
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/myhloli/3b3a00a4a0a61577b6c30f989092d20d/mineru_demo.ipynb)
21
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/abs/2409.18839)
22

myhloli's avatar
myhloli committed
23

xuchao's avatar
xuchao committed
24
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
25

xuchao's avatar
xuchao committed
26
<!-- language -->
27

xuchao's avatar
xuchao committed
28
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
29

xuchao's avatar
xuchao committed
30
<!-- hot link -->
31

徐超's avatar
徐超 committed
32
<p align="center">
xuchao's avatar
xuchao committed
33
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
徐超's avatar
徐超 committed
34
35
</p>

xuchao's avatar
xuchao committed
36
<!-- join us -->
37

徐超's avatar
徐超 committed
38
<p align="center">
xuchao's avatar
xuchao committed
39
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
40
</p>
赵小蒙's avatar
赵小蒙 committed
41

xuchao's avatar
xuchao committed
42
</div>
赵小蒙's avatar
赵小蒙 committed
43

xuchao's avatar
xuchao committed
44
# Changelog
myhloli's avatar
myhloli committed
45
- 2024/11/15 0.9.3 released. Integrated [RapidTable](https://github.com/RapidAI/RapidTable) for table recognition, improving single-table parsing speed by more than 10 times, with higher accuracy and lower GPU memory usage.
46
- 2024/11/06 0.9.2 released. Integrated the [StructTable-InternVL2-1B](https://huggingface.co/U4R/StructTable-InternVL2-1B) model for table recognition functionality.
47
48
49
50
- 2024/10/31 0.9.0 released. This is a major new version with extensive code refactoring, addressing numerous issues, improving performance, reducing hardware requirements, and enhancing usability:
  - Refactored the sorting module code to use [layoutreader](https://github.com/ppaanngggg/layoutreader) for reading order sorting, ensuring high accuracy in various layouts.
  - Refactored the paragraph concatenation module to achieve good results in cross-column, cross-page, cross-figure, and cross-table scenarios.
  - Refactored the list and table of contents recognition functions, significantly improving the accuracy of list blocks and table of contents blocks, as well as the parsing of corresponding text paragraphs.
51
  - Refactored the matching logic for figures, tables, and descriptive text, greatly enhancing the accuracy of matching captions and footnotes to figures and tables, and reducing the loss rate of descriptive text to near zero.
52
53
54
55
56
57
  - Added multi-language support for OCR, supporting detection and recognition of 84 languages.For the list of supported languages, see [OCR Language Support List](https://paddlepaddle.github.io/PaddleOCR/latest/en/ppocr/blog/multi_languages.html#5-support-languages-and-abbreviations).
  - Added memory recycling logic and other memory optimization measures, significantly reducing memory usage. The memory requirement for enabling all acceleration features except table acceleration (layout/formula/OCR) has been reduced from 16GB to 8GB, and the memory requirement for enabling all acceleration features has been reduced from 24GB to 10GB.
  - Optimized configuration file feature switches, adding an independent formula detection switch to significantly improve speed and parsing results when formula detection is not needed.
  - Integrated [PDF-Extract-Kit 1.0](https://github.com/opendatalab/PDF-Extract-Kit):
    - Added the self-developed `doclayout_yolo` model, which speeds up processing by more than 10 times compared to the original solution while maintaining similar parsing effects, and can be freely switched with `layoutlmv3` via the configuration file.
    - Upgraded formula parsing to `unimernet 0.2.1`, improving formula parsing accuracy while significantly reducing memory usage.
58
    - Due to the repository change for `PDF-Extract-Kit 1.0`, you need to re-download the model. Please refer to [How to Download Models](docs/how_to_download_models_en.md) for detailed steps.
sfk's avatar
sfk committed
59
- 2024/09/27 Version 0.8.1 released, Fixed some bugs, and providing a [localized deployment version](projects/web_demo/README.md) of the [online demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF/) and the [front-end interface](projects/web/README.md).
drunkpig's avatar
drunkpig committed
60
- 2024/09/09: Version 0.8.0 released, supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.
61
- 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
xuchao's avatar
xuchao committed
62
63
64
65
66
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release

<!-- TABLE OF CONTENT -->
67

xuchao's avatar
xuchao committed
68
69
70
71
72
73
74
75
76
77
78
79
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
myhloli's avatar
myhloli committed
80
            <li><a href="#using-gpu">Using GPU</a></li>
xuchao's avatar
xuchao committed
81
82
83
84
            </ul>
        </li>
        <li><a href="#usage">Usage</a>
            <ul>
myhloli's avatar
myhloli committed
85
            <li><a href="#command-line">Command Line</a></li>
xuchao's avatar
xuchao committed
86
            <li><a href="#api">API</a></li>
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
87
            <li><a href="#deploy-derived-projects">Deploy Derived Projects</a></li>
xuchao's avatar
xuchao committed
88
89
90
91
92
93
            <li><a href="#development-guide">Development Guide</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
myhloli's avatar
myhloli committed
94
95
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
xuchao's avatar
xuchao committed
96
97
98
99
100
101
102
103
104
105
106
107
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
108

xuchao's avatar
xuchao committed
109
## Project Introduction
110

xuchao's avatar
xuchao committed
111
112
113
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
114

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
115
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
116

myhloli's avatar
myhloli committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
## Key Features

- Remove headers, footers, footnotes, page numbers, etc., to ensure semantic coherence.
- Output text in human-readable order, suitable for single-column, multi-column, and complex layouts.
- Preserve the structure of the original document, including headings, paragraphs, lists, etc.
- Extract images, image descriptions, tables, table titles, and footnotes.
- Automatically recognize and convert formulas in the document to LaTeX format.
- Automatically recognize and convert tables in the document to LaTeX or HTML format.
- Automatically detect scanned PDFs and garbled PDFs and enable OCR functionality.
- OCR supports detection and recognition of 84 languages.
- Supports multiple output formats, such as multimodal and NLP Markdown, JSON sorted by reading order, and rich intermediate formats.
- Supports various visualization results, including layout visualization and span visualization, for efficient confirmation of output quality.
- Supports both CPU and GPU environments.
- Compatible with Windows, Linux, and Mac platforms.

xuchao's avatar
xuchao committed
132
133
## Quick Start

myhloli's avatar
myhloli committed
134
135
136
If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
137

xuchao's avatar
xuchao committed
138
139
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
myhloli's avatar
myhloli committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
- [Linux/Windows + CUDA](#Using-GPU)

> [!WARNING]
> **Pre-installation Notice—Hardware and Software Environment Support**
>
> To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.
>
> By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.
>
> In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

<table>
    <tr>
        <td colspan="3" rowspan="2">Operating System</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64(unsupported ARM Linux)</td>
        <td>x86_64(unsupported ARM Windows)</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">Memory</td>
        <td colspan="3">16GB or more, recommended 32GB+</td>
    </tr>
    <tr>
        <td colspan="3">Python Version</td>
        <td colspan="3">3.10(Please make sure to create a Python 3.10 virtual environment using conda)</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver Version</td>
        <td>latest (Proprietary Driver)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA Environment</td>
        <td>Automatic installation [12.1 (pytorch) + 11.8 (paddle)]</td>
        <td>11.8 (manual installation) + cuDNN v8.7.0 (manual installation)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU Hardware Support List</td>
        <td colspan="2">Minimum Requirement 8G+ VRAM</td>
        <td colspan="2">3060ti/3070/4060<br>
        8G VRAM enables layout, formula recognition acceleration and OCR acceleration</td>
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">Recommended Configuration 10G+ VRAM</td>
        <td colspan="2">3080/3080ti/3090/3090ti/4070/4070ti/4070tisuper/4080/4090<br>
        10G VRAM or more can enable layout, formula recognition, OCR acceleration and table recognition acceleration simultaneously
        </td>
    </tr>
</table>
xuchao's avatar
xuchao committed
200
201
202

### Online Demo

203
Stable Version (Stable version verified by QA):  
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
204
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
205
206

Test Version (Synced with dev branch updates, testing new features):  
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
207
208
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
xuchao's avatar
xuchao committed
209
210
211
212

### Quick CPU Demo

#### 1. Install magic-pdf
213

214
215
216
```bash
conda create -n MinerU python=3.10
conda activate MinerU
217
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
218
```
219

xuchao's avatar
xuchao committed
220
221
222
#### 2. Download model weight files

Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
223

224
#### 3. Modify the Configuration File for Additional Configuration
xuchao's avatar
xuchao committed
225

226
227
After completing the [2. Download model weight files](#2-download-model-weight-files) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path.
You can find the `magic-pdf.json` file in your 【user directory】.
228

229
> [!TIP]
230
> The user directory for Windows is "C:\\Users\\username", for Linux it is "/home/username", and for macOS it is "/Users/username".
231

232
You can modify certain configurations in this file to enable or disable features, such as table recognition:
233

myhloli's avatar
myhloli committed
234

235
> [!NOTE]
236
> If the following items are not present in the JSON, please manually add the required items and remove the comment content (standard JSON does not support comments).
237

238
239
```json
{
240
241
242
243
244
245
246
247
248
249
    // other config
    "layout-config": {
        "model": "layoutlmv3" // Please change to "doclayout_yolo" when using doclayout_yolo.
    },
    "formula-config": {
        "mfd_model": "yolo_v8_mfd",
        "mfr_model": "unimernet_small",
        "enable": true  // The formula recognition feature is enabled by default. If you need to disable it, please change the value here to "false".
    },
    "table-config": {
myhloli's avatar
myhloli committed
250
        "model": "rapid_table",  // When using structEqTable, please change to "struct_eqtable".
251
        "enable": false, // The table recognition feature is disabled by default. If you need to enable it, please change the value here to "true".
xuchao's avatar
xuchao committed
252
253
        "max_time": 400
    }
254
255
256
}
```

myhloli's avatar
myhloli committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
### Using GPU

If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system:

- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md)
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
- Quick Deployment with Docker
> [!IMPORTANT]
> Docker requires a GPU with at least 8GB of VRAM, and all acceleration features are enabled by default.
>
> Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
> 
> ```bash
> docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
> ```
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
  docker build -t mineru:latest .
  docker run --rm -it --gpus=all mineru:latest /bin/bash
  magic-pdf --help
  ```

xuchao's avatar
xuchao committed
279
## Usage
280

myhloli's avatar
myhloli committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
### Command Line

```bash
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
  -o, --output-dir PATH        output local directory  [required]
  -m, --method [ocr|txt|auto]  the method for parsing pdf. ocr: using ocr
                               technique to extract information from pdf. txt:
                               suitable for the text-based pdf only and
                               outperform ocr. auto: automatically choose the
                               best method for parsing pdf from ocr and txt.
                               without method specified, auto will be used by
                               default.
  -l, --lang TEXT              Input the languages in the pdf (if known) to
                               improve OCR accuracy.  Optional. You should
                               input "Abbreviation" with language form url: ht
                               tps://paddlepaddle.github.io/PaddleOCR/latest/en
                               /ppocr/blog/multi_languages.html#5-support-languages-
                               and-abbreviations
  -d, --debug BOOLEAN          Enables detailed debugging information during
                               the execution of the CLI commands.
  -s, --start INTEGER          The starting page for PDF parsing, beginning
                               from 0.
  -e, --end INTEGER            The ending page for PDF parsing, beginning from
                               0.
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
```

`{some_pdf}` can be a single PDF file or a directory containing multiple PDFs.
The results will be saved in the `{some_output_dir}` directory. The output file list is as follows:

```text
├── some_pdf.md                          # markdown file
├── images                               # directory for storing images
├── some_pdf_layout.pdf                  # layout diagram (Include layout reading order)
├── some_pdf_middle.json                 # MinerU intermediate processing result
├── some_pdf_model.json                  # model inference result
├── some_pdf_origin.pdf                  # original PDF file
├── some_pdf_spans.pdf                   # smallest granularity bbox position information diagram
└── some_pdf_content_list.json           # Rich text JSON arranged in reading order
```
> [!TIP]
> For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).

xuchao's avatar
xuchao committed
336
### API
赵小蒙's avatar
赵小蒙 committed
337

xuchao's avatar
xuchao committed
338
Processing files from local disk
339

赵小蒙's avatar
赵小蒙 committed
340
341
342
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
343
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
344
345
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
346
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
347
348
349
350
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
351
Processing files from object storage
352

赵小蒙's avatar
赵小蒙 committed
353
354
355
356
357
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
358
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
359
360
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
361
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
362
363
364
365
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
366
For detailed implementation, refer to:
367

xuchao's avatar
xuchao committed
368
369
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
赵小蒙's avatar
赵小蒙 committed
370

371
372
### Deploy Derived Projects

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
373
Derived projects include secondary development projects based on MinerU by project developers and community developers,  
374
such as application interfaces based on Gradio, RAG based on llama, web demos similar to the official website, lightweight multi-GPU load balancing client/server ends, etc.
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
375
These projects may offer more features and a better user experience.  
376
377
378
For specific deployment methods, please refer to the [Derived Project README](projects/README.md)


xuchao's avatar
xuchao committed
379
### Development Guide
赵小蒙's avatar
赵小蒙 committed
380

xuchao's avatar
xuchao committed
381
TODO
赵小蒙's avatar
赵小蒙 committed
382

xuchao's avatar
xuchao committed
383
# TODO
赵小蒙's avatar
赵小蒙 committed
384

385
386
387
388
389
390
- [x] Reading order based on the model  
- [x] Recognition of `index` and `list` in the main text  
- [x] Table recognition
- [ ] Code block recognition in the main text
- [ ] [Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
391

myhloli's avatar
myhloli committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# Known Issues

- Reading order is determined by the model based on the spatial distribution of readable content, and may be out of order in some areas under extremely complex layouts.
- Vertical text is not supported.
- Tables of contents and lists are recognized through rules, and some uncommon list formats may not be recognized.
- Only one level of headings is supported; hierarchical headings are not currently supported.
- Code blocks are not yet supported in the layout model.
- Comic books, art albums, primary school textbooks, and exercises cannot be parsed well.
- Table recognition may result in row/column recognition errors in complex tables.
- OCR recognition may produce inaccurate characters in PDFs of lesser-known languages (e.g., diacritical marks in Latin script, easily confused characters in Arabic script).
- Some formulas may not render correctly in Markdown.

# FAQ

[FAQ in Chinese](docs/FAQ_zh_cn.md)

[FAQ in English](docs/FAQ_en_us.md)

赵小蒙's avatar
赵小蒙 committed
410
411
# All Thanks To Our Contributors

412
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
413
414
415
416
417
418
419
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

xuchao's avatar
xuchao committed
420
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
421
422

# Acknowledgments
423

xuchao's avatar
xuchao committed
424
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
425
- [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO)
xuchao's avatar
xuchao committed
426
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
427
- [RapidTable](https://github.com/RapidAI/RapidTable)
赵小蒙's avatar
赵小蒙 committed
428
429
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
430
- [layoutreader](https://github.com/ppaanngggg/layoutreader)
赵小蒙's avatar
赵小蒙 committed
431
432
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
433

赵小蒙's avatar
赵小蒙 committed
434
435
436
# Citation

```bibtex
437
438
439
440
441
442
443
444
445
446
@misc{wang2024mineruopensourcesolutionprecise,
      title={MinerU: An Open-Source Solution for Precise Document Content Extraction}, 
      author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
      year={2024},
      eprint={2409.18839},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.18839}, 
}

Conghui He's avatar
Conghui He committed
447
448
449
450
451
452
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}
赵小蒙's avatar
赵小蒙 committed
453
454
455
```

# Star History
赵小蒙's avatar
赵小蒙 committed
456

赵小蒙's avatar
赵小蒙 committed
457
458
459
460
461
462
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
463
</a>
qiangqiang199's avatar
qiangqiang199 committed
464

xuchao's avatar
xuchao committed
465
# Magic-doc
466

xuchao's avatar
xuchao committed
467
468
469
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
470

xuchao's avatar
xuchao committed
471
472
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
473
# Links
xuchao's avatar
xuchao committed
474

qiangqiang199's avatar
qiangqiang199 committed
475
476
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
477
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)