"examples/offline_inference_with_prefix.py" did not exist on "14cc317ba48229d93ee2417822d96ccb8db56abe"
README.md 32.8 KB
Newer Older
xuchao's avatar
xuchao committed
1
2
<div align="center" xmlns="http://www.w3.org/1999/html">
<!-- logo -->
徐超's avatar
徐超 committed
3
<p align="center">
drunkpig's avatar
drunkpig committed
4
  <img src="docs/images/MinerU-logo.png" width="300px" style="vertical-align:middle;">
徐超's avatar
徐超 committed
5
6
</p>

xuchao's avatar
xuchao committed
7
<!-- icon -->
8

赵小蒙's avatar
赵小蒙 committed
9
10
11
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
myhloli's avatar
myhloli committed
12
13
14
15
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
16

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
17
18
19
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
20
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/papayalove/b5f4913389e7ff9883c6b687de156e78/mineru_demo.ipynb)
sfk's avatar
sfk committed
21
[![Paper](https://img.shields.io/badge/Paper-arXiv-green)](https://arxiv.org/pdf/2409.18839?)
22

xuchao's avatar
xuchao committed
23
<a href="https://trendshift.io/repositories/11174" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11174" alt="opendatalab%2FMinerU | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
drunkpig's avatar
drunkpig committed
24

xuchao's avatar
xuchao committed
25
<!-- language -->
26

xuchao's avatar
xuchao committed
27
[English](README.md) | [简体中文](README_zh-CN.md)
赵小蒙's avatar
赵小蒙 committed
28

xuchao's avatar
xuchao committed
29
<!-- hot link -->
30

徐超's avatar
徐超 committed
31
<p align="center">
xuchao's avatar
xuchao committed
32
<a href="https://github.com/opendatalab/PDF-Extract-Kit">PDF-Extract-Kit: High-Quality PDF Extraction Toolkit</a>🔥🔥🔥
徐超's avatar
徐超 committed
33
34
</p>

xuchao's avatar
xuchao committed
35
<!-- join us -->
36

徐超's avatar
徐超 committed
37
<p align="center">
xuchao's avatar
xuchao committed
38
    👋 join us on <a href="https://discord.gg/Tdedn9GTXq" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/internlm/mineru.jpg" target="_blank">WeChat</a>
徐超's avatar
徐超 committed
39
</p>
赵小蒙's avatar
赵小蒙 committed
40

xuchao's avatar
xuchao committed
41
</div>
赵小蒙's avatar
赵小蒙 committed
42

xuchao's avatar
xuchao committed
43
# Changelog
sfk's avatar
sfk committed
44
- 2024/09/27 Version 0.8.1 released, Fixed some bugs, and providing a [localized deployment version](projects/web_demo/README.md) of the [online demo](https://opendatalab.com/OpenSourceTools/Extractor/PDF/) and the [front-end interface](projects/web/README.md).
drunkpig's avatar
drunkpig committed
45
- 2024/09/09: Version 0.8.0 released, supporting fast deployment with Dockerfile, and launching demos on Huggingface and Modelscope.
46
- 2024/08/30: Version 0.7.1 released, add paddle tablemaster table recognition option
xuchao's avatar
xuchao committed
47
48
49
50
51
- 2024/08/09: Version 0.7.0b1 released, simplified installation process, added table recognition functionality
- 2024/08/01: Version 0.6.2b1 released, optimized dependency conflict issues and installation documentation
- 2024/07/05: Initial open-source release

<!-- TABLE OF CONTENT -->
52

xuchao's avatar
xuchao committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<details open="open">
  <summary><h2 style="display: inline-block">Table of Contents</h2></summary>
  <ol>
    <li>
      <a href="#mineru">MinerU</a>
      <ul>
        <li><a href="#project-introduction">Project Introduction</a></li>
        <li><a href="#key-features">Key Features</a></li>
        <li><a href="#quick-start">Quick Start</a>
            <ul>
            <li><a href="#online-demo">Online Demo</a></li>
            <li><a href="#quick-cpu-demo">Quick CPU Demo</a></li>
            <li><a href="#using-gpu">Using GPU</a></li>
            </ul>
        </li>
        <li><a href="#usage">Usage</a>
            <ul>
            <li><a href="#command-line">Command Line</a></li>
            <li><a href="#api">API</a></li>
            <li><a href="#development-guide">Development Guide</a></li>
            </ul>
        </li>
      </ul>
    </li>
    <li><a href="#todo">TODO</a></li>
    <li><a href="#known-issues">Known Issues</a></li>
    <li><a href="#faq">FAQ</a></li>
    <li><a href="#all-thanks-to-our-contributors">All Thanks To Our Contributors</a></li>
    <li><a href="#license-information">License Information</a></li>
    <li><a href="#acknowledgments">Acknowledgments</a></li>
    <li><a href="#citation">Citation</a></li>
    <li><a href="#star-history">Star History</a></li>
    <li><a href="#magic-doc">Magic-doc</a></li>
    <li><a href="#magic-html">Magic-html</a></li>
    <li><a href="#links">Links</a></li>
  </ol>
</details>

# MinerU
92

xuchao's avatar
xuchao committed
93
## Project Introduction
94

xuchao's avatar
xuchao committed
95
96
97
MinerU is a tool that converts PDFs into machine-readable formats (e.g., markdown, JSON), allowing for easy extraction into any format.
MinerU was born during the pre-training process of [InternLM](https://github.com/InternLM/InternLM). We focus on solving symbol conversion issues in scientific literature and hope to contribute to technological development in the era of large models.
Compared to well-known commercial products, MinerU is still young. If you encounter any issues or if the results are not as expected, please submit an issue on [issue](https://github.com/opendatalab/MinerU/issues) and **attach the relevant PDF**.
myhloli's avatar
myhloli committed
98

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
99
https://github.com/user-attachments/assets/4bea02c9-6d54-4cd6-97ed-dff14340982c
myhloli's avatar
myhloli committed
100

xuchao's avatar
xuchao committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
## Key Features

- Removes elements such as headers, footers, footnotes, and page numbers while maintaining semantic continuity
- Outputs text in a human-readable order from multi-column documents
- Retains the original structure of the document, including titles, paragraphs, and lists
- Extracts images, image captions, tables, and table captions
- Automatically recognizes formulas in the document and converts them to LaTeX
- Automatically recognizes tables in the document and converts them to LaTeX
- Automatically detects and enables OCR for corrupted PDFs
- Supports both CPU and GPU environments
- Supports Windows, Linux, and Mac platforms

## Quick Start

If you encounter any installation issues, please first consult the <a href="#faq">FAQ</a>. </br>
If the parsing results are not as expected, refer to the <a href="#known-issues">Known Issues</a>. </br>
There are three different ways to experience MinerU:
118

xuchao's avatar
xuchao committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
- [Online Demo (No Installation Required)](#online-demo)
- [Quick CPU Demo (Windows, Linux, Mac)](#quick-cpu-demo)
- [Linux/Windows + CUDA](#Using-GPU)

**⚠️ Pre-installation Notice—Hardware and Software Environment Support**

To ensure the stability and reliability of the project, we only optimize and test for specific hardware and software environments during development. This ensures that users deploying and running the project on recommended system configurations will get the best performance with the fewest compatibility issues.

By focusing resources on the mainline environment, our team can more efficiently resolve potential bugs and develop new features.

In non-mainline environments, due to the diversity of hardware and software configurations, as well as third-party dependency compatibility issues, we cannot guarantee 100% project availability. Therefore, for users who wish to use this project in non-recommended environments, we suggest carefully reading the documentation and FAQ first. Most issues already have corresponding solutions in the FAQ. We also encourage community feedback to help us gradually expand support.

<table>
    <tr>
        <td colspan="3" rowspan="2">Operating System</td>
    </tr>
    <tr>
        <td>Ubuntu 22.04 LTS</td>
        <td>Windows 10 / 11</td>
        <td>macOS 11+</td>
    </tr>
    <tr>
        <td colspan="3">CPU</td>
        <td>x86_64</td>
        <td>x86_64</td>
        <td>x86_64 / arm64</td>
    </tr>
    <tr>
        <td colspan="3">Memory</td>
        <td colspan="3">16GB or more, recommended 32GB+</td>
    </tr>
    <tr>
        <td colspan="3">Python Version</td>
        <td colspan="3">3.10</td>
    </tr>
    <tr>
        <td colspan="3">Nvidia Driver Version</td>
        <td>latest (Proprietary Driver)</td>
        <td>latest</td>
        <td>None</td>
    </tr>
    <tr>
        <td colspan="3">CUDA Environment</td>
        <td>Automatic installation [12.1 (pytorch) + 11.8 (paddle)]</td>
        <td>11.8 (manual installation) + cuDNN v8.7.0 (manual installation)</td>
        <td>None</td>
    </tr>
    <tr>
        <td rowspan="2">GPU Hardware Support List</td>
        <td colspan="2">Minimum Requirement 8G+ VRAM</td>
        <td colspan="2">3060ti/3070/3080/3080ti/4060/4070/4070ti<br>
170
        8G VRAM enables layout, formula recognition acceleration and OCR acceleration</td>
xuchao's avatar
xuchao committed
171
172
173
174
175
        <td rowspan="2">None</td>
    </tr>
    <tr>
        <td colspan="2">Recommended Configuration 16G+ VRAM</td>
        <td colspan="2">3090/3090ti/4070ti super/4080/4090<br>
176
        16G VRAM or more can enable layout, formula recognition, OCR acceleration and table recognition acceleration simultaneously
sfk's avatar
sfk committed
177
        </td>
xuchao's avatar
xuchao committed
178
179
180
181
182
    </tr>
</table>

### Online Demo

Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
183
184
185
[![OpenDataLab](https://img.shields.io/badge/Demo_on_OpenDataLab-blue?logo=&labelColor=white)](https://opendatalab.com/OpenSourceTools/Extractor/PDF)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-yellow.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-purple?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
xuchao's avatar
xuchao committed
186
187
188
189

### Quick CPU Demo

#### 1. Install magic-pdf
190

191
192
193
```bash
conda create -n MinerU python=3.10
conda activate MinerU
194
pip install -U magic-pdf[full] --extra-index-url https://wheels.myhloli.com
195
```
196

xuchao's avatar
xuchao committed
197
198
199
#### 2. Download model weight files

Refer to [How to Download Model Files](docs/how_to_download_models_en.md) for detailed instructions.
200

201
#### 3. Modify the Configuration File for Additional Configuration
xuchao's avatar
xuchao committed
202

203
204
After completing the [2. Download model weight files](#2-download-model-weight-files) step, the script will automatically generate a `magic-pdf.json` file in the user directory and configure the default model path.
You can find the `magic-pdf.json` file in your 【user directory】.
205

206
> The user directory for Windows is "C:\\Users\\username", for Linux it is "/home/username", and for macOS it is "/Users/username".
207

208
You can modify certain configurations in this file to enable or disable features, such as table recognition:
209

210
> If the following items are not present in the JSON, please manually add the required items and remove the comment content (standard JSON does not support comments).
211

212
213
```json
{
xuchao's avatar
xuchao committed
214
215
  // other config
  "table-config": {
216
        "model": "TableMaster", // Another option of this value is 'struct_eqtable'
xuchao's avatar
xuchao committed
217
218
219
        "is_table_recog_enable": false, // Table recognition is disabled by default, modify this value to enable it
        "max_time": 400
    }
220
221
222
}
```

xuchao's avatar
xuchao committed
223
### Using GPU
224

xuchao's avatar
xuchao committed
225
If your device supports CUDA and meets the GPU requirements of the mainline environment, you can use GPU acceleration. Please select the appropriate guide based on your system:
226

xuchao's avatar
xuchao committed
227
228
- [Ubuntu 22.04 LTS + GPU](docs/README_Ubuntu_CUDA_Acceleration_en_US.md)
- [Windows 10/11 + GPU](docs/README_Windows_CUDA_Acceleration_en_US.md)
229
230
- Quick Deployment with Docker
    > Docker requires a GPU with at least 16GB of VRAM, and all acceleration features are enabled by default.
231
232
233
234
235
236
    >
    > Before running this Docker, you can use the following command to check if your device supports CUDA acceleration on Docker.
    > 
    > ```bash
    > docker run --rm --gpus=all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi
    > ```
237
238
  ```bash
  wget https://github.com/opendatalab/MinerU/raw/master/Dockerfile
239
240
  docker build -t mineru:latest .
  docker run --rm -it --gpus=all mineru:latest /bin/bash
241
242
  magic-pdf --help
  ```
243

xuchao's avatar
xuchao committed
244
## Usage
245

xuchao's avatar
xuchao committed
246
### Command Line
247
248

```bash
xuchao's avatar
xuchao committed
249
250
251
252
253
254
magic-pdf --help
Usage: magic-pdf [OPTIONS]

Options:
  -v, --version                display the version and exit
  -p, --path PATH              local pdf filepath or directory  [required]
Xiaomeng Zhao's avatar
Xiaomeng Zhao committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  -o, --output-dir PATH        output local directory  [required]
  -m, --method [ocr|txt|auto]  the method for parsing pdf. ocr: using ocr
                               technique to extract information from pdf. txt:
                               suitable for the text-based pdf only and
                               outperform ocr. auto: automatically choose the
                               best method for parsing pdf from ocr and txt.
                               without method specified, auto will be used by
                               default.
  -l, --lang TEXT              Input the languages in the pdf (if known) to
                               improve OCR accuracy.  Optional. You should
                               input "Abbreviation" with language form url: ht
                               tps://paddlepaddle.github.io/PaddleOCR/en/ppocr
                               /blog/multi_languages.html#5-support-languages-
                               and-abbreviations
  -d, --debug BOOLEAN          Enables detailed debugging information during
                               the execution of the CLI commands.
  -s, --start INTEGER          The starting page for PDF parsing, beginning
                               from 0.
  -e, --end INTEGER            The ending page for PDF parsing, beginning from
                               0.
xuchao's avatar
xuchao committed
275
276
277
278
279
280
281
282
  --help                       Show this message and exit.


## show version
magic-pdf -v

## command line example
magic-pdf -p {some_pdf} -o {some_output_dir} -m auto
283
284
```

xuchao's avatar
xuchao committed
285
286
287
288
`{some_pdf}` can be a single PDF file or a directory containing multiple PDFs.
The results will be saved in the `{some_output_dir}` directory. The output file list is as follows:

```text
289
290
291
292
293
294
├── some_pdf.md                          # markdown file
├── images                               # directory for storing images
├── some_pdf_layout.pdf                  # layout diagram
├── some_pdf_middle.json                 # MinerU intermediate processing result
├── some_pdf_model.json                  # model inference result
├── some_pdf_origin.pdf                  # original PDF file
295
296
├── some_pdf_spans.pdf                   # smallest granularity bbox position information diagram
└── some_pdf_content_list.json           # Rich text JSON arranged in reading order
297
298
```

xuchao's avatar
xuchao committed
299
For more information about the output files, please refer to the [Output File Description](docs/output_file_en_us.md).
300

xuchao's avatar
xuchao committed
301
### API
赵小蒙's avatar
赵小蒙 committed
302

xuchao's avatar
xuchao committed
303
Processing files from local disk
304

赵小蒙's avatar
赵小蒙 committed
305
306
307
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
308
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
309
310
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
311
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
312
313
314
315
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
316
Processing files from object storage
317

赵小蒙's avatar
赵小蒙 committed
318
319
320
321
322
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
323
jso_useful_key = {"_pdf_type": "", "model_list": []}
赵小蒙's avatar
赵小蒙 committed
324
325
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
xuchao's avatar
xuchao committed
326
pipe.pipe_analyze()
赵小蒙's avatar
赵小蒙 committed
327
328
329
330
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```

xuchao's avatar
xuchao committed
331
For detailed implementation, refer to:
332

xuchao's avatar
xuchao committed
333
334
- [demo.py Simplest Processing Method](demo/demo.py)
- [magic_pdf_parse_main.py More Detailed Processing Workflow](demo/magic_pdf_parse_main.py)
赵小蒙's avatar
赵小蒙 committed
335

xuchao's avatar
xuchao committed
336
### Development Guide
赵小蒙's avatar
赵小蒙 committed
337

xuchao's avatar
xuchao committed
338
TODO
赵小蒙's avatar
赵小蒙 committed
339

xuchao's avatar
xuchao committed
340
# TODO
赵小蒙's avatar
赵小蒙 committed
341

342
343
- [x] Model-based reading order
- [x] List recognition within the text
xuchao's avatar
xuchao committed
344
- [ ] Code block recognition within the text
345
- [x] Table of contents recognition
xuchao's avatar
xuchao committed
346
- [x] Table recognition
347
- [ ] [Chemical formula recognition](docs/chemical_knowledge_introduction/introduction.pdf)
xuchao's avatar
xuchao committed
348
- [ ] Geometric shape recognition
赵小蒙's avatar
赵小蒙 committed
349

xuchao's avatar
xuchao committed
350
# Known Issues
351

352
353
354
355
356
- Reading order is based on the model's sorting of text distribution in space, which may become disordered under extremely complex layouts.
- Vertical text is not supported.
- Tables of contents and lists are recognized through rules; a few uncommon list formats may not be identified.
- Only one level of headings is supported; hierarchical heading levels are currently not supported.
- Code blocks are not yet supported in the layout model.
xuchao's avatar
xuchao committed
357
358
359
- Comic books, art books, elementary school textbooks, and exercise books are not well-parsed yet
- Enabling OCR may produce better results in PDFs with a high density of formulas
- If you are processing PDFs with a large number of formulas, it is strongly recommended to enable the OCR function. When using PyMuPDF to extract text, overlapping text lines can occur, leading to inaccurate formula insertion positions.
赵小蒙's avatar
赵小蒙 committed
360

361

xuchao's avatar
xuchao committed
362
# FAQ
363

xuchao's avatar
xuchao committed
364
[FAQ in Chinese](docs/FAQ_zh_cn.md)
赵小蒙's avatar
赵小蒙 committed
365

xuchao's avatar
xuchao committed
366
[FAQ in English](docs/FAQ_en_us.md)
赵小蒙's avatar
赵小蒙 committed
367

赵小蒙's avatar
赵小蒙 committed
368
369
# All Thanks To Our Contributors

370
<a href="https://github.com/opendatalab/MinerU/graphs/contributors">
赵小蒙's avatar
赵小蒙 committed
371
372
373
374
375
376
377
  <img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>

# License Information

[LICENSE.md](LICENSE.md)

xuchao's avatar
xuchao committed
378
This project currently uses PyMuPDF to achieve advanced functionality. However, since it adheres to the AGPL license, it may impose restrictions on certain usage scenarios. In future iterations, we plan to explore and replace it with a more permissive PDF processing library to enhance user-friendliness and flexibility.
赵小蒙's avatar
赵小蒙 committed
379
380

# Acknowledgments
381

xuchao's avatar
xuchao committed
382
383
- [PDF-Extract-Kit](https://github.com/opendatalab/PDF-Extract-Kit)
- [StructEqTable](https://github.com/UniModal4Reasoning/StructEqTable-Deploy)
赵小蒙's avatar
赵小蒙 committed
384
385
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
386
- [layoutreader](https://github.com/ppaanngggg/layoutreader)
赵小蒙's avatar
赵小蒙 committed
387
388
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
赵小蒙's avatar
赵小蒙 committed
389

赵小蒙's avatar
赵小蒙 committed
390
391
392
# Citation

```bibtex
393
394
395
396
397
398
399
400
401
402
@misc{wang2024mineruopensourcesolutionprecise,
      title={MinerU: An Open-Source Solution for Precise Document Content Extraction}, 
      author={Bin Wang and Chao Xu and Xiaomeng Zhao and Linke Ouyang and Fan Wu and Zhiyuan Zhao and Rui Xu and Kaiwen Liu and Yuan Qu and Fukai Shang and Bo Zhang and Liqun Wei and Zhihao Sui and Wei Li and Botian Shi and Yu Qiao and Dahua Lin and Conghui He},
      year={2024},
      eprint={2409.18839},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2409.18839}, 
}

Conghui He's avatar
Conghui He committed
403
404
405
406
407
408
@article{he2024opendatalab,
  title={Opendatalab: Empowering general artificial intelligence with open datasets},
  author={He, Conghui and Li, Wei and Jin, Zhenjiang and Xu, Chao and Wang, Bin and Lin, Dahua},
  journal={arXiv preprint arXiv:2407.13773},
  year={2024}
}
赵小蒙's avatar
赵小蒙 committed
409
410
411
```

# Star History
赵小蒙's avatar
赵小蒙 committed
412

赵小蒙's avatar
赵小蒙 committed
413
414
415
416
417
418
<a>
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
 </picture>
myhloli's avatar
myhloli committed
419
</a>
qiangqiang199's avatar
qiangqiang199 committed
420

xuchao's avatar
xuchao committed
421
# Magic-doc
422

xuchao's avatar
xuchao committed
423
424
425
[Magic-Doc](https://github.com/InternLM/magic-doc) Fast speed ppt/pptx/doc/docx/pdf extraction tool

# Magic-html
426

xuchao's avatar
xuchao committed
427
428
[Magic-HTML](https://github.com/opendatalab/magic-html) Mixed web page extraction tool

qiangqiang199's avatar
qiangqiang199 committed
429
# Links
xuchao's avatar
xuchao committed
430

qiangqiang199's avatar
qiangqiang199 committed
431
432
- [LabelU (A Lightweight Multi-modal Data Annotation Tool)](https://github.com/opendatalab/labelU)
- [LabelLLM (An Open-source LLM Dialogue Annotation Platform)](https://github.com/opendatalab/LabelLLM)
qiangqiang199's avatar
qiangqiang199 committed
433
- [PDF-Extract-Kit (A Comprehensive Toolkit for High-Quality PDF Content Extraction)](https://github.com/opendatalab/PDF-Extract-Kit)