batch_analyze.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import time

import cv2
import numpy as np
import torch
from loguru import logger
from PIL import Image

from magic_pdf.config.constants import MODEL_NAME
from magic_pdf.config.exceptions import CUDA_NOT_AVAILABLE
from magic_pdf.data.dataset import Dataset
from magic_pdf.libs.clean_memory import clean_memory
13
from magic_pdf.libs.config_reader import get_device
14
15
16
from magic_pdf.model.doc_analyze_by_custom_model import ModelSingleton
from magic_pdf.model.pdf_extract_kit import CustomPEKModel
from magic_pdf.model.sub_modules.model_utils import (
icecraft's avatar
icecraft committed
17
    clean_vram, crop_img, get_res_list_from_layout_res)
18
from magic_pdf.model.sub_modules.ocr.paddleocr.ocr_utils import (
icecraft's avatar
icecraft committed
19
20
    get_adjusted_mfdetrec_res, get_ocr_result_list)
from magic_pdf.operators.models import InferenceResult
21
22
23
24
25
26
27
28
29
30
31
32

YOLO_LAYOUT_BASE_BATCH_SIZE = 4
MFD_BASE_BATCH_SIZE = 1
MFR_BASE_BATCH_SIZE = 16


class BatchAnalyze:
    def __init__(self, model: CustomPEKModel, batch_ratio: int):
        self.model = model
        self.batch_ratio = batch_ratio

    def __call__(self, images: list) -> list:
33
        images_layout_res = []
34
35

        layout_start_time = time.time()
36
37
38
39
40
41
42
        if self.model.layout_model_name == MODEL_NAME.LAYOUTLMv3:
            # layoutlmv3
            for image in images:
                layout_res = self.model.layout_model(image, ignore_catids=[])
                images_layout_res.append(layout_res)
        elif self.model.layout_model_name == MODEL_NAME.DocLayout_YOLO:
            # doclayout_yolo
43
44
45
46
            layout_images = []
            modified_images = []
            for image_index, image in enumerate(images):
                pil_img = Image.fromarray(image)
47
48
49
50
51
52
53
54
55
56
                # width, height = pil_img.size
                # if height > width:
                #     input_res = {'poly': [0, 0, width, 0, width, height, 0, height]}
                #     new_image, useful_list = crop_img(
                #         input_res, pil_img, crop_paste_x=width // 2, crop_paste_y=0
                #     )
                #     layout_images.append(new_image)
                #     modified_images.append([image_index, useful_list])
                # else:
                layout_images.append(pil_img)
57

58
            images_layout_res += self.model.layout_model.batch_predict(
59
                layout_images, self.batch_ratio * YOLO_LAYOUT_BASE_BATCH_SIZE
60
61
            )

62
63
            for image_index, useful_list in modified_images:
                for res in images_layout_res[image_index]:
icecraft's avatar
icecraft committed
64
                    for i in range(len(res['poly'])):
65
                        if i % 2 == 0:
icecraft's avatar
icecraft committed
66
67
                            res['poly'][i] = (
                                res['poly'][i] - useful_list[0] + useful_list[2]
68
69
                            )
                        else:
icecraft's avatar
icecraft committed
70
71
                            res['poly'][i] = (
                                res['poly'][i] - useful_list[1] + useful_list[3]
72
73
                            )
        logger.info(
icecraft's avatar
icecraft committed
74
            f'layout time: {round(time.time() - layout_start_time, 2)}, image num: {len(images)}'
75
76
        )

77
78
        if self.model.apply_formula:
            # 公式检测
79
            mfd_start_time = time.time()
80
81
82
            images_mfd_res = self.model.mfd_model.batch_predict(
                images, self.batch_ratio * MFD_BASE_BATCH_SIZE
            )
83
            logger.info(
icecraft's avatar
icecraft committed
84
                f'mfd time: {round(time.time() - mfd_start_time, 2)}, image num: {len(images)}'
85
            )
86
87

            # 公式识别
88
            mfr_start_time = time.time()
89
90
91
92
93
94
95
            images_formula_list = self.model.mfr_model.batch_predict(
                images_mfd_res,
                images,
                batch_size=self.batch_ratio * MFR_BASE_BATCH_SIZE,
            )
            for image_index in range(len(images)):
                images_layout_res[image_index] += images_formula_list[image_index]
96
            logger.info(
icecraft's avatar
icecraft committed
97
                f'mfr time: {round(time.time() - mfr_start_time, 2)}, image num: {len(images)}'
98
            )
99
100
101
102

        # 清理显存
        clean_vram(self.model.device, vram_threshold=8)

103
104
105
106
        ocr_time = 0
        ocr_count = 0
        table_time = 0
        table_count = 0
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        # reference: magic_pdf/model/doc_analyze_by_custom_model.py:doc_analyze
        for index in range(len(images)):
            layout_res = images_layout_res[index]
            pil_img = Image.fromarray(images[index])

            ocr_res_list, table_res_list, single_page_mfdetrec_res = (
                get_res_list_from_layout_res(layout_res)
            )
            # ocr识别
            ocr_start = time.time()
            # Process each area that requires OCR processing
            for res in ocr_res_list:
                new_image, useful_list = crop_img(
                    res, pil_img, crop_paste_x=50, crop_paste_y=50
                )
                adjusted_mfdetrec_res = get_adjusted_mfdetrec_res(
                    single_page_mfdetrec_res, useful_list
                )

                # OCR recognition
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)

                if self.model.apply_ocr:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res
                    )[0]
                else:
                    ocr_res = self.model.ocr_model.ocr(
                        new_image, mfd_res=adjusted_mfdetrec_res, rec=False
                    )[0]

                # Integration results
                if ocr_res:
                    ocr_result_list = get_ocr_result_list(ocr_res, useful_list)
                    layout_res.extend(ocr_result_list)
142
143
            ocr_time += time.time() - ocr_start
            ocr_count += len(ocr_res_list)
144
145
146
147
148
149
150
151
152
153
154

            # 表格识别 table recognition
            if self.model.apply_table:
                table_start = time.time()
                for res in table_res_list:
                    new_image, _ = crop_img(res, pil_img)
                    single_table_start_time = time.time()
                    html_code = None
                    if self.model.table_model_name == MODEL_NAME.STRUCT_EQTABLE:
                        with torch.no_grad():
                            table_result = self.model.table_model.predict(
icecraft's avatar
icecraft committed
155
                                new_image, 'html'
156
157
158
159
160
161
162
163
164
165
166
167
                            )
                            if len(table_result) > 0:
                                html_code = table_result[0]
                    elif self.model.table_model_name == MODEL_NAME.TABLE_MASTER:
                        html_code = self.model.table_model.img2html(new_image)
                    elif self.model.table_model_name == MODEL_NAME.RAPID_TABLE:
                        html_code, table_cell_bboxes, elapse = (
                            self.model.table_model.predict(new_image)
                        )
                    run_time = time.time() - single_table_start_time
                    if run_time > self.model.table_max_time:
                        logger.warning(
icecraft's avatar
icecraft committed
168
                            f'table recognition processing exceeds max time {self.model.table_max_time}s'
169
170
171
172
                        )
                    # 判断是否返回正常
                    if html_code:
                        expected_ending = html_code.strip().endswith(
icecraft's avatar
icecraft committed
173
174
                            '</html>'
                        ) or html_code.strip().endswith('</table>')
175
                        if expected_ending:
icecraft's avatar
icecraft committed
176
                            res['html'] = html_code
177
178
                        else:
                            logger.warning(
icecraft's avatar
icecraft committed
179
                                'table recognition processing fails, not found expected HTML table end'
180
181
182
                            )
                    else:
                        logger.warning(
icecraft's avatar
icecraft committed
183
                            'table recognition processing fails, not get html return'
184
                        )
185
186
187
188
                table_time += time.time() - table_start
                table_count += len(table_res_list)

        if self.model.apply_ocr:
icecraft's avatar
icecraft committed
189
            logger.info(f'ocr time: {round(ocr_time, 2)}, image num: {ocr_count}')
190
        else:
icecraft's avatar
icecraft committed
191
            logger.info(f'det time: {round(ocr_time, 2)}, image num: {ocr_count}')
192
        if self.model.apply_table:
icecraft's avatar
icecraft committed
193
            logger.info(f'table time: {round(table_time, 2)}, image num: {table_count}')
194

195
196
        return images_layout_res

197
198
199
200
201
202
203
204
205
206
207
208
209

def doc_batch_analyze(
    dataset: Dataset,
    ocr: bool = False,
    show_log: bool = False,
    start_page_id=0,
    end_page_id=None,
    lang=None,
    layout_model=None,
    formula_enable=None,
    table_enable=None,
    batch_ratio: int | None = None,
) -> InferenceResult:
icecraft's avatar
icecraft committed
210
    """Perform batch analysis on a document dataset.
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    Args:
        dataset (Dataset): The dataset containing document pages to be analyzed.
        ocr (bool, optional): Flag to enable OCR (Optical Character Recognition). Defaults to False.
        show_log (bool, optional): Flag to enable logging. Defaults to False.
        start_page_id (int, optional): The starting page ID for analysis. Defaults to 0.
        end_page_id (int, optional): The ending page ID for analysis. Defaults to None, which means analyze till the last page.
        lang (str, optional): Language for OCR. Defaults to None.
        layout_model (optional): Layout model to be used for analysis. Defaults to None.
        formula_enable (optional): Flag to enable formula detection. Defaults to None.
        table_enable (optional): Flag to enable table detection. Defaults to None.
        batch_ratio (int | None, optional): Ratio for batch processing. Defaults to None, which sets it to 1.

    Raises:
        CUDA_NOT_AVAILABLE: If CUDA is not available, raises an exception as batch analysis is not supported in CPU mode.

    Returns:
        InferenceResult: The result of the batch analysis containing the analyzed data and the dataset.
    """

    if not torch.cuda.is_available():
icecraft's avatar
icecraft committed
232
        raise CUDA_NOT_AVAILABLE('batch analyze not support in CPU mode')
233

icecraft's avatar
icecraft committed
234
    lang = None if lang == '' else lang
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    # TODO: auto detect batch size
    batch_ratio = 1 if batch_ratio is None else batch_ratio
    end_page_id = end_page_id if end_page_id else len(dataset)

    model_manager = ModelSingleton()
    custom_model: CustomPEKModel = model_manager.get_model(
        ocr, show_log, lang, layout_model, formula_enable, table_enable
    )
    batch_model = BatchAnalyze(model=custom_model, batch_ratio=batch_ratio)

    model_json = []

    # batch analyze
    images = []
    for index in range(len(dataset)):
        if start_page_id <= index <= end_page_id:
            page_data = dataset.get_page(index)
            img_dict = page_data.get_image()
icecraft's avatar
icecraft committed
253
            images.append(img_dict['img'])
254
255
256
257
258
    analyze_result = batch_model(images)

    for index in range(len(dataset)):
        page_data = dataset.get_page(index)
        img_dict = page_data.get_image()
icecraft's avatar
icecraft committed
259
260
        page_width = img_dict['width']
        page_height = img_dict['height']
261
262
263
264
265
        if start_page_id <= index <= end_page_id:
            result = analyze_result.pop(0)
        else:
            result = []

icecraft's avatar
icecraft committed
266
267
        page_info = {'page_no': index, 'height': page_height, 'width': page_width}
        page_dict = {'layout_dets': result, 'page_info': page_info}
268
269
270
        model_json.append(page_dict)

    # TODO: clean memory when gpu memory is not enough
271
    clean_memory_start_time = time.time()
272
    clean_memory(get_device())
icecraft's avatar
icecraft committed
273
    logger.info(f'clean memory time: {round(time.time() - clean_memory_start_time, 2)}')
274
275

    return InferenceResult(model_json, dataset)