pdf_extract_kit.py 10.4 KB
Newer Older
1
from loguru import logger
myhloli's avatar
myhloli committed
2
import os
3
import time
4
5

os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'  # 禁止albumentations检查更新
myhloli's avatar
myhloli committed
6
7
8
9
10
11
try:
    import cv2
    import yaml
    import argparse
    import numpy as np
    import torch
12
13
14
    import torchtext
    if torchtext.__version__ >= "0.18.0":
        torchtext.disable_torchtext_deprecation_warning()
myhloli's avatar
myhloli committed
15
16
17
18
19
20
21
    from PIL import Image
    from torchvision import transforms
    from torch.utils.data import Dataset, DataLoader
    from ultralytics import YOLO
    from unimernet.common.config import Config
    import unimernet.tasks as tasks
    from unimernet.processors import load_processor
赵小蒙's avatar
update:  
赵小蒙 committed
22

23
24
except ImportError as e:
    logger.exception(e)
25
26
27
    logger.error(
        'Required dependency not installed, please install by \n'
        '"pip install magic-pdf[full] detectron2 --extra-index-url https://myhloli.github.io/wheels/"')
myhloli's avatar
myhloli committed
28
    exit(1)
赵小蒙's avatar
update:  
赵小蒙 committed
29

30
31
32
33
from magic_pdf.model.pek_sub_modules.layoutlmv3.model_init import Layoutlmv3_Predictor
from magic_pdf.model.pek_sub_modules.post_process import get_croped_image, latex_rm_whitespace
from magic_pdf.model.pek_sub_modules.self_modify import ModifiedPaddleOCR

赵小蒙's avatar
update:  
赵小蒙 committed
34

35
36
37
def mfd_model_init(weight):
    mfd_model = YOLO(weight)
    return mfd_model
赵小蒙's avatar
update:  
赵小蒙 committed
38
39


40
def mfr_model_init(weight_dir, cfg_path, _device_='cpu'):
41
42
43
44
45
46
47
    args = argparse.Namespace(cfg_path=cfg_path, options=None)
    cfg = Config(args)
    cfg.config.model.pretrained = os.path.join(weight_dir, "pytorch_model.bin")
    cfg.config.model.model_config.model_name = weight_dir
    cfg.config.model.tokenizer_config.path = weight_dir
    task = tasks.setup_task(cfg)
    model = task.build_model(cfg)
48
    model = model.to(_device_)
49
50
    vis_processor = load_processor('formula_image_eval', cfg.config.datasets.formula_rec_eval.vis_processor.eval)
    return model, vis_processor
赵小蒙's avatar
update:  
赵小蒙 committed
51
52


53
54
55
56
57
def layout_model_init(weight, config_file, device):
    model = Layoutlmv3_Predictor(weight, config_file, device)
    return model


58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
class MathDataset(Dataset):
    def __init__(self, image_paths, transform=None):
        self.image_paths = image_paths
        self.transform = transform

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        # if not pil image, then convert to pil image
        if isinstance(self.image_paths[idx], str):
            raw_image = Image.open(self.image_paths[idx])
        else:
            raw_image = self.image_paths[idx]
        if self.transform:
            image = self.transform(raw_image)
74
            return image
75
76


77
class CustomPEKModel:
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
    def __init__(self, ocr: bool = False, show_log: bool = False, **kwargs):
        """
        ======== model init ========
        """
        # 获取当前文件(即 pdf_extract_kit.py)的绝对路径
        current_file_path = os.path.abspath(__file__)
        # 获取当前文件所在的目录(model)
        current_dir = os.path.dirname(current_file_path)
        # 上一级目录(magic_pdf)
        root_dir = os.path.dirname(current_dir)
        # model_config目录
        model_config_dir = os.path.join(root_dir, 'resources', 'model_config')
        # 构建 model_configs.yaml 文件的完整路径
        config_path = os.path.join(model_config_dir, 'model_configs.yaml')
93
        with open(config_path, "r", encoding='utf-8') as f:
94
95
96
97
98
99
100
101
            self.configs = yaml.load(f, Loader=yaml.FullLoader)
        # 初始化解析配置
        self.apply_layout = kwargs.get("apply_layout", self.configs["config"]["layout"])
        self.apply_formula = kwargs.get("apply_formula", self.configs["config"]["formula"])
        self.apply_ocr = ocr
        logger.info(
            "DocAnalysis init, this may take some times. apply_layout: {}, apply_formula: {}, apply_ocr: {}".format(
                self.apply_layout, self.apply_formula, self.apply_ocr
赵小蒙's avatar
update:  
赵小蒙 committed
102
            )
103
104
105
        )
        assert self.apply_layout, "DocAnalysis must contain layout model."
        # 初始化解析方案
106
        self.device = kwargs.get("device", self.configs["config"]["device"])
107
        logger.info("using device: {}".format(self.device))
108
        models_dir = kwargs.get("models_dir", os.path.join(root_dir, "resources", "models"))
109
        logger.info("using models_dir: {}".format(models_dir))
110

111
112
113
        # 初始化公式识别
        if self.apply_formula:
            # 初始化公式检测模型
114
115
            self.mfd_model = mfd_model_init(str(os.path.join(models_dir, self.configs["weights"]["mfd"])))

116
            # 初始化公式解析模型
117
118
119
            mfr_weight_dir = str(os.path.join(models_dir, self.configs["weights"]["mfr"]))
            mfr_cfg_path = str(os.path.join(model_config_dir, "UniMERNet", "demo.yaml"))
            self.mfr_model, mfr_vis_processors = mfr_model_init(mfr_weight_dir, mfr_cfg_path, _device_=self.device)
120
            self.mfr_transform = transforms.Compose([mfr_vis_processors, ])
121
122
123
124
125
126
127

        # 初始化layout模型
        self.layout_model = Layoutlmv3_Predictor(
            str(os.path.join(models_dir, self.configs['weights']['layout'])),
            str(os.path.join(model_config_dir, "layoutlmv3", "layoutlmv3_base_inference.yaml")),
            device=self.device
        )
128
129
130
        # 初始化ocr
        if self.apply_ocr:
            self.ocr_model = ModifiedPaddleOCR(show_log=show_log)
赵小蒙's avatar
update:  
赵小蒙 committed
131

132
        logger.info('DocAnalysis init done!')
赵小蒙's avatar
update:  
赵小蒙 committed
133

134
135
    def __call__(self, image):

136
137
138
        latex_filling_list = []
        mf_image_list = []

139
140
141
142
143
144
        # layout检测
        layout_start = time.time()
        layout_res = self.layout_model(image, ignore_catids=[])
        layout_cost = round(time.time() - layout_start, 2)
        logger.info(f"layout detection cost: {layout_cost}")

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        if self.apply_formula:
            # 公式检测
            mfd_res = self.mfd_model.predict(image, imgsz=1888, conf=0.25, iou=0.45, verbose=True)[0]
            for xyxy, conf, cla in zip(mfd_res.boxes.xyxy.cpu(), mfd_res.boxes.conf.cpu(), mfd_res.boxes.cls.cpu()):
                xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
                new_item = {
                    'category_id': 13 + int(cla.item()),
                    'poly': [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax],
                    'score': round(float(conf.item()), 2),
                    'latex': '',
                }
                layout_res.append(new_item)
                latex_filling_list.append(new_item)
                bbox_img = get_croped_image(Image.fromarray(image), [xmin, ymin, xmax, ymax])
                mf_image_list.append(bbox_img)

            # 公式识别
            mfr_start = time.time()
            dataset = MathDataset(mf_image_list, transform=self.mfr_transform)
            dataloader = DataLoader(dataset, batch_size=64, num_workers=0)
            mfr_res = []
            for mf_img in dataloader:
                mf_img = mf_img.to(self.device)
                output = self.mfr_model.generate({'image': mf_img})
                mfr_res.extend(output['pred_str'])
            for res, latex in zip(latex_filling_list, mfr_res):
                res['latex'] = latex_rm_whitespace(latex)
            mfr_cost = round(time.time() - mfr_start, 2)
            logger.info(f"formula nums: {len(mf_image_list)}, mfr time: {mfr_cost}")
174

myhloli's avatar
myhloli committed
175
        # ocr识别
176
        if self.apply_ocr:
177
178
            ocr_start = time.time()
            pil_img = Image.fromarray(image)
179
180
181

            # 筛选出需要OCR的区域和公式区域
            ocr_res_list = []
182
183
184
185
            single_page_mfdetrec_res = []
            for res in layout_res:
                if int(res['category_id']) in [13, 14]:
                    single_page_mfdetrec_res.append({
186
187
                        "bbox": [int(res['poly'][0]), int(res['poly'][1]),
                                 int(res['poly'][4]), int(res['poly'][5])],
188
                    })
189
190
191
192
193
194
195
196
197
198
199
                elif int(res['category_id']) in [0, 1, 2, 4, 6, 7]:
                    ocr_res_list.append(res)

            # 对每一个需OCR处理的区域进行处理
            for res in ocr_res_list:
                xmin, ymin = int(res['poly'][0]), int(res['poly'][1])
                xmax, ymax = int(res['poly'][4]), int(res['poly'][5])

                paste_x = 50
                paste_y = 50
                # 创建一个宽高各多50的白色背景
200
201
                new_width = xmax - xmin + paste_x * 2
                new_height = ymax - ymin + paste_y * 2
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
                new_image = Image.new('RGB', (new_width, new_height), 'white')

                # 裁剪图像
                crop_box = (xmin, ymin, xmax, ymax)
                cropped_img = pil_img.crop(crop_box)
                new_image.paste(cropped_img, (paste_x, paste_y))

                # 调整公式区域坐标
                adjusted_mfdetrec_res = []
                for mf_res in single_page_mfdetrec_res:
                    mf_xmin, mf_ymin, mf_xmax, mf_ymax = mf_res["bbox"]
                    # 将公式区域坐标调整为相对于裁剪区域的坐标
                    x0 = mf_xmin - xmin + paste_x
                    y0 = mf_ymin - ymin + paste_y
                    x1 = mf_xmax - xmin + paste_x
                    y1 = mf_ymax - ymin + paste_y
218
219
                    # 过滤在图外的公式块
                    if any([x1 < 0, y1 < 0]) or any([x0 > new_width, y0 > new_height]):
220
221
222
223
224
225
226
                        continue
                    else:
                        adjusted_mfdetrec_res.append({
                            "bbox": [x0, y0, x1, y1],
                        })

                # OCR识别
227
228
                new_image = cv2.cvtColor(np.asarray(new_image), cv2.COLOR_RGB2BGR)
                ocr_res = self.ocr_model.ocr(new_image, mfd_res=adjusted_mfdetrec_res)[0]
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

                # 整合结果
                if ocr_res:
                    for box_ocr_res in ocr_res:
                        p1, p2, p3, p4 = box_ocr_res[0]
                        text, score = box_ocr_res[1]

                        # 将坐标转换回原图坐标系
                        p1 = [p1[0] - paste_x + xmin, p1[1] - paste_y + ymin]
                        p2 = [p2[0] - paste_x + xmin, p2[1] - paste_y + ymin]
                        p3 = [p3[0] - paste_x + xmin, p3[1] - paste_y + ymin]
                        p4 = [p4[0] - paste_x + xmin, p4[1] - paste_y + ymin]

                        layout_res.append({
                            'category_id': 15,
                            'poly': p1 + p2 + p3 + p4,
                            'score': round(score, 2),
                            'text': text,
                        })

249
250
251
252
            ocr_cost = round(time.time() - ocr_start, 2)
            logger.info(f"ocr cost: {ocr_cost}")

        return layout_res