"src/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "8c1f51978c705b49a23526a8311b64716411afe2"
  1. 03 Nov, 2022 2 commits
    • Will Berman's avatar
      VQ-diffusion (#658) · ef2ea33c
      Will Berman authored
      
      
      * Changes for VQ-diffusion VQVAE
      
      Add specify dimension of embeddings to VQModel:
      `VQModel` will by default set the dimension of embeddings to the number
      of latent channels. The VQ-diffusion VQVAE has a smaller
      embedding dimension, 128, than number of latent channels, 256.
      
      Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
      unet block helpers. VQ-diffusion's VQVAE uses those two block types.
      
      * Changes for VQ-diffusion transformer
      
      Modify attention.py so SpatialTransformer can be used for
      VQ-diffusion's transformer.
      
      SpatialTransformer:
      - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
      - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
      - modified forward pass to take optional timestep embeddings
      
      ImagePositionalEmbeddings:
      - added to provide positional embeddings to discrete inputs for latent pixels
      
      BasicTransformerBlock:
      - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
      - modified forward pass to take optional timestep embeddings
      
      CrossAttention:
      - now may optionally take a bias parameter for its query, key, and value linear layers
      
      FeedForward:
      - Internal layers are now configurable
      
      ApproximateGELU:
      - Activation function in VQ-diffusion's feedforward layer
      
      AdaLayerNorm:
      - Norm layer modified to incorporate timestep embeddings
      
      * Add VQ-diffusion scheduler
      
      * Add VQ-diffusion pipeline
      
      * Add VQ-diffusion convert script to diffusers
      
      * Add VQ-diffusion dummy objects
      
      * Add VQ-diffusion markdown docs
      
      * Add VQ-diffusion tests
      
      * some renaming
      
      * some fixes
      
      * more renaming
      
      * correct
      
      * fix typo
      
      * correct weights
      
      * finalize
      
      * fix tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * finish
      
      * finish
      
      * up
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ef2ea33c
    • Revist's avatar
      feat: add repaint (#974) · d38c8043
      Revist authored
      
      
      * feat: add repaint
      
      * fix: fix quality check with `make fix-copies`
      
      * fix: remove old unnecessary arg
      
      * chore: change default to DDPM (looks better in experiments)
      
      * ".to(device)" changed to "device="
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * make generator device-specific
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * make generator device-specific and change shape
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * fix: add preprocessing for image and mask
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * fix: update test
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Update src/diffusers/pipelines/repaint/pipeline_repaint.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Add docs and examples
      
      * Fix toctree
      Co-authored-by: default avatarfja <fja@zurich.ibm.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <anton@huggingface.co>
      d38c8043
  2. 02 Nov, 2022 3 commits
    • Patrick von Platen's avatar
      Rename latent (#1102) · d53ffbbd
      Patrick von Platen authored
      * Rename latent
      
      * uP
      d53ffbbd
    • Suraj Patil's avatar
      [docs] add euler scheduler in docs, how to use differnet schedulers (#1089) · 86087957
      Suraj Patil authored
      * add euler scheduler in docs
      
      * add a section for how to use different scheds
      
      * address patrck's comments
      86087957
    • MatthieuTPHR's avatar
      Up to 2x speedup on GPUs using memory efficient attention (#532) · 98c42134
      MatthieuTPHR authored
      
      
      * 2x speedup using memory efficient attention
      
      * remove einops dependency
      
      * Swap K, M in op instantiation
      
      * Simplify code, remove unnecessary maybe_init call and function, remove unused self.scale parameter
      
      * make xformers a soft dependency
      
      * remove one-liner functions
      
      * change one letter variable to appropriate names
      
      * Remove Env variable dependency, remove MemoryEfficientCrossAttention class and use enable_xformers_memory_efficient_attention method
      
      * Add memory efficient attention toggle to img2img and inpaint pipelines
      
      * Clearer management of xformers' availability
      
      * update optimizations markdown to add info about memory efficient attention
      
      * add benchmarks for TITAN RTX
      
      * More detailed explanation of how the mem eff benchmark were ran
      
      * Removing autocast from optimization markdown
      
      * import_utils: import torch only if is available
      Co-authored-by: default avatarNouamane Tazi <nouamane98@gmail.com>
      98c42134
  3. 31 Oct, 2022 2 commits
  4. 29 Oct, 2022 2 commits
  5. 28 Oct, 2022 1 commit
  6. 27 Oct, 2022 1 commit
  7. 25 Oct, 2022 3 commits
  8. 24 Oct, 2022 2 commits
  9. 20 Oct, 2022 1 commit
  10. 19 Oct, 2022 1 commit
  11. 11 Oct, 2022 3 commits
  12. 06 Oct, 2022 3 commits
  13. 05 Oct, 2022 4 commits
  14. 04 Oct, 2022 1 commit
  15. 30 Sep, 2022 2 commits
    • Nouamane Tazi's avatar
      [docs] fix table in fp16.mdx (#683) · daa22050
      Nouamane Tazi authored
      daa22050
    • Nouamane Tazi's avatar
      Optimize Stable Diffusion (#371) · 9ebaea54
      Nouamane Tazi authored
      * initial commit
      
      * make UNet stream capturable
      
      * try to fix noise_pred value
      
      * remove cuda graph and keep NB
      
      * non blocking unet with PNDMScheduler
      
      * make timesteps np arrays for pndm scheduler
      because lists don't get formatted to tensors in `self.set_format`
      
      * make max async in pndm
      
      * use channel last format in unet
      
      * avoid moving timesteps device in each unet call
      
      * avoid memcpy op in `get_timestep_embedding`
      
      * add `channels_last` kwarg to `DiffusionPipeline.from_pretrained`
      
      * update TODO
      
      * replace `channels_last` kwarg with `memory_format` for more generality
      
      * revert the channels_last changes to leave it for another PR
      
      * remove non_blocking when moving input ids to device
      
      * remove blocking from all .to() operations at beginning of pipeline
      
      * fix merging
      
      * fix merging
      
      * model can run in other precisions without autocast
      
      * attn refactoring
      
      * Revert "attn refactoring"
      
      This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb.
      
      * remove restriction to run conv_norm in fp32
      
      * use `baddbmm` instead of `matmul`for better in attention for better perf
      
      * removing all reshapes to test perf
      
      * Revert "removing all reshapes to test perf"
      
      This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd.
      
      * add shapes comments
      
      * hardcore whats needed for jitting
      
      * Revert "hardcore whats needed for jitting"
      
      This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a.
      
      * Revert "remove restriction to run conv_norm in fp32"
      
      This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9.
      
      * revert using baddmm in attention's forward
      
      * cleanup comment
      
      * remove restriction to run conv_norm in fp32. no quality loss was noticed
      
      This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213.
      
      * add more optimizations techniques to docs
      
      * Revert "add shapes comments"
      
      This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4.
      
      * apply suggestions
      
      * make quality
      
      * apply suggestions
      
      * styling
      
      * `scheduler.timesteps` are now arrays so we dont need .to()
      
      * remove useless .type()
      
      * use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms`
      
      * move scheduler timestamps to correct device if tensors
      
      * add device to `set_timesteps` in LMSD scheduler
      
      * `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it
      
      * quick fix
      
      * styling
      
      * remove kwargs from schedulers `set_timesteps`
      
      * revert to using max in K-LMS inpaint pipeline test
      
      * Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it"
      
      This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899.
      
      * move timesteps to correct device before loop in SD pipeline
      
      * apply previous fix to other SD pipelines
      
      * UNet now accepts tensor timesteps even on wrong device, to avoid errors
      - it shouldnt affect performance if timesteps are alrdy on correct device
      - it does slow down performance if they're on the wrong device
      
      * fix pipeline when timesteps are arrays with strides
      9ebaea54
  16. 29 Sep, 2022 1 commit
  17. 27 Sep, 2022 1 commit
    • Kashif Rasul's avatar
      [Pytorch] Pytorch only schedulers (#534) · bd8df2da
      Kashif Rasul authored
      
      
      * pytorch only schedulers
      
      * fix style
      
      * remove match_shape
      
      * pytorch only ddpm
      
      * remove SchedulerMixin
      
      * remove numpy from karras_ve
      
      * fix types
      
      * remove numpy from lms_discrete
      
      * remove numpy from pndm
      
      * fix typo
      
      * remove mixin and numpy from sde_vp and ve
      
      * remove remaining tensor_format
      
      * fix style
      
      * sigmas has to be torch tensor
      
      * removed set_format in readme
      
      * remove set format from docs
      
      * remove set_format from pipelines
      
      * update tests
      
      * fix typo
      
      * continue to use mixin
      
      * fix imports
      
      * removed unsed imports
      
      * match shape instead of assuming image shapes
      
      * remove import typo
      
      * update call to add_noise
      
      * use math instead of numpy
      
      * fix t_index
      
      * removed commented out numpy tests
      
      * timesteps needs to be discrete
      
      * cast timesteps to int in flax scheduler too
      
      * fix device mismatch issue
      
      * small fix
      
      * Update src/diffusers/schedulers/scheduling_pndm.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      bd8df2da
  18. 23 Sep, 2022 2 commits
  19. 22 Sep, 2022 1 commit
  20. 16 Sep, 2022 1 commit
  21. 13 Sep, 2022 1 commit
  22. 12 Sep, 2022 1 commit
  23. 09 Sep, 2022 1 commit