Unverified Commit 19e559d5 authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

remove use_auth_token from remaining places (#737)

remove use_auth_token
parent 78744b6a
...@@ -74,7 +74,7 @@ Run the following command to authenticate your token ...@@ -74,7 +74,7 @@ Run the following command to authenticate your token
huggingface-cli login huggingface-cli login
``` ```
If you have already cloned the repo, then you won't need to go through these steps. You can simple remove the `--use_auth_token` arg from the following command. If you have already cloned the repo, then you won't need to go through these steps.
<br> <br>
...@@ -87,7 +87,7 @@ export MODEL_NAME="CompVis/stable-diffusion-v1-4" ...@@ -87,7 +87,7 @@ export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export DATA_DIR="path-to-dir-containing-images" export DATA_DIR="path-to-dir-containing-images"
accelerate launch textual_inversion.py \ accelerate launch textual_inversion.py \
--pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ --pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATA_DIR \ --train_data_dir=$DATA_DIR \
--learnable_property="object" \ --learnable_property="object" \
--placeholder_token="<cat-toy>" --initializer_token="toy" \ --placeholder_token="<cat-toy>" --initializer_token="toy" \
......
...@@ -32,7 +32,7 @@ Run the following command to authenticate your token ...@@ -32,7 +32,7 @@ Run the following command to authenticate your token
huggingface-cli login huggingface-cli login
``` ```
If you have already cloned the repo, then you won't need to go through these steps. You can simple remove the `--use_auth_token` arg from the following command. If you have already cloned the repo, then you won't need to go through these steps.
<br> <br>
...@@ -46,7 +46,7 @@ export INSTANCE_DIR="path-to-instance-images" ...@@ -46,7 +46,7 @@ export INSTANCE_DIR="path-to-instance-images"
export OUTPUT_DIR="path-to-save-model" export OUTPUT_DIR="path-to-save-model"
accelerate launch train_dreambooth.py \ accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ --pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \ --instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \ --output_dir=$OUTPUT_DIR \
--instance_prompt="a photo of sks dog" \ --instance_prompt="a photo of sks dog" \
...@@ -71,7 +71,7 @@ export CLASS_DIR="path-to-class-images" ...@@ -71,7 +71,7 @@ export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model" export OUTPUT_DIR="path-to-save-model"
accelerate launch train_dreambooth.py \ accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ --pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \ --instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \ --class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \ --output_dir=$OUTPUT_DIR \
...@@ -101,7 +101,7 @@ export CLASS_DIR="path-to-class-images" ...@@ -101,7 +101,7 @@ export CLASS_DIR="path-to-class-images"
export OUTPUT_DIR="path-to-save-model" export OUTPUT_DIR="path-to-save-model"
accelerate launch train_dreambooth.py \ accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ --pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \ --instance_data_dir=$INSTANCE_DIR \
--class_data_dir=$CLASS_DIR \ --class_data_dir=$CLASS_DIR \
--output_dir=$OUTPUT_DIR \ --output_dir=$OUTPUT_DIR \
......
...@@ -158,14 +158,6 @@ def parse_args(): ...@@ -158,14 +158,6 @@ def parse_args():
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--use_auth_token",
action="store_true",
help=(
"Will use the token generated when running `huggingface-cli login` (necessary to use this script with"
" private models)."
),
)
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument( parser.add_argument(
"--hub_model_id", "--hub_model_id",
...@@ -341,7 +333,7 @@ def main(): ...@@ -341,7 +333,7 @@ def main():
if cur_class_images < args.num_class_images: if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, use_auth_token=args.use_auth_token, torch_dtype=torch_dtype args.pretrained_model_name_or_path, torch_dtype=torch_dtype
) )
pipeline.set_progress_bar_config(disable=True) pipeline.set_progress_bar_config(disable=True)
...@@ -389,20 +381,12 @@ def main(): ...@@ -389,20 +381,12 @@ def main():
if args.tokenizer_name: if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path: elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained( tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
args.pretrained_model_name_or_path, subfolder="tokenizer", use_auth_token=args.use_auth_token
)
# Load models and create wrapper for stable diffusion # Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained( text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=args.use_auth_token vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=args.use_auth_token
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=args.use_auth_token
)
if args.gradient_checkpointing: if args.gradient_checkpointing:
unet.enable_gradient_checkpointing() unet.enable_gradient_checkpointing()
...@@ -589,9 +573,7 @@ def main(): ...@@ -589,9 +573,7 @@ def main():
# Create the pipeline using using the trained modules and save it. # Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process: if accelerator.is_main_process:
pipeline = StableDiffusionPipeline.from_pretrained( pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet)
unet=accelerator.unwrap_model(unet),
use_auth_token=args.use_auth_token,
) )
pipeline.save_pretrained(args.output_dir) pipeline.save_pretrained(args.output_dir)
......
...@@ -39,7 +39,7 @@ Run the following command to authenticate your token ...@@ -39,7 +39,7 @@ Run the following command to authenticate your token
huggingface-cli login huggingface-cli login
``` ```
If you have already cloned the repo, then you won't need to go through these steps. You can simple remove the `--use_auth_token` arg from the following command. If you have already cloned the repo, then you won't need to go through these steps.
<br> <br>
...@@ -52,7 +52,7 @@ export MODEL_NAME="CompVis/stable-diffusion-v1-4" ...@@ -52,7 +52,7 @@ export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export DATA_DIR="path-to-dir-containing-images" export DATA_DIR="path-to-dir-containing-images"
accelerate launch textual_inversion.py \ accelerate launch textual_inversion.py \
--pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ --pretrained_model_name_or_path=$MODEL_NAME \
--train_data_dir=$DATA_DIR \ --train_data_dir=$DATA_DIR \
--learnable_property="object" \ --learnable_property="object" \
--placeholder_token="<cat-toy>" --initializer_token="toy" \ --placeholder_token="<cat-toy>" --initializer_token="toy" \
......
...@@ -136,14 +136,6 @@ def parse_args(): ...@@ -136,14 +136,6 @@ def parse_args():
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--use_auth_token",
action="store_true",
help=(
"Will use the token generated when running `huggingface-cli login` (necessary to use this script with"
" private models)."
),
)
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument( parser.add_argument(
"--hub_model_id", "--hub_model_id",
...@@ -371,9 +363,7 @@ def main(): ...@@ -371,9 +363,7 @@ def main():
if args.tokenizer_name: if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path: elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained( tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
args.pretrained_model_name_or_path, subfolder="tokenizer", use_auth_token=args.use_auth_token
)
# Add the placeholder token in tokenizer # Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(args.placeholder_token) num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
...@@ -393,15 +383,9 @@ def main(): ...@@ -393,15 +383,9 @@ def main():
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
# Load models and create wrapper for stable diffusion # Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained( text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=args.use_auth_token vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=args.use_auth_token
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=args.use_auth_token
)
# Resize the token embeddings as we are adding new special tokens to the tokenizer # Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer)) text_encoder.resize_token_embeddings(len(tokenizer))
......
...@@ -28,16 +28,12 @@ download the weights with `git lfs install; git clone https://huggingface.co/Com ...@@ -28,16 +28,12 @@ download the weights with `git lfs install; git clone https://huggingface.co/Com
### Using Stable Diffusion without being logged into the Hub. ### Using Stable Diffusion without being logged into the Hub.
If you want to download the model weights using a single Python line, you need to pass the token If you want to download the model weights using a single Python line, you need to be logged in via `huggingface-cli login`.
to `use_auth_token` or be logged in via `huggingface-cli login`.
For more information on access tokens, please refer to [this section](https://huggingface.co/docs/hub/security-tokens) of the documentation.
Assuming your token is stored under YOUR_TOKEN, you can download the stable diffusion pipeline as follows:
```python ```python
from diffusers import DiffusionPipeline from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
``` ```
This however can make it difficult to build applications on top of `diffusers` as you will always have to pass the token around. A potential way to solve this issue is by downloading the weights to a local path `"./stable-diffusion-v1-4"`: This however can make it difficult to build applications on top of `diffusers` as you will always have to pass the token around. A potential way to solve this issue is by downloading the weights to a local path `"./stable-diffusion-v1-4"`:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment