scheduling_dpmsolver_singlestep.py 46.9 KB
Newer Older
1
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, logging
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


32
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
33
34
35
36
37
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
38
39
40
41
42
43
44
45
46
47
48
49
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
50
51
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
52
53
54
55

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
56
    if alpha_transform_type == "cosine":
57

YiYi Xu's avatar
YiYi Xu committed
58
59
60
61
62
63
64
65
66
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
67
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
68
69
70
71
72

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
73
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
74
75
76
77
78
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
    """
79
    `DPMSolverSinglestepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
80

81
82
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
83
84

    Args:
85
86
87
88
89
90
91
92
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
93
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
94
95
96
97
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
98
            sampling, and `solver_order=3` for unconditional sampling.
99
100
101
102
103
104
105
106
107
108
109
110
111
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
112
113
114
115
116
            Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
            type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
            `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
            paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
            sampling like in Stable Diffusion.
117
118
119
120
121
122
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
123
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
124
125
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
126
        final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
127
128
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
129
130
131
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
132
        variance_type (`str`, *optional*):
133
134
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
135
136
    """

Kashif Rasul's avatar
Kashif Rasul committed
137
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
155
        lower_order_final: bool = False,
156
        use_karras_sigmas: Optional[bool] = False,
157
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
158
159
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
160
    ):
161
162
163
164
        if algorithm_type == "dpmsolver":
            deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)

165
166
167
168
169
170
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
171
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
172
173
174
175
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
176
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
177
178
179
180
181
182
183

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
184
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
185
186
187
188
189

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
190
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]:
191
            if algorithm_type == "deis":
192
                self.register_to_config(algorithm_type="dpmsolver++")
193
            else:
194
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
195
        if solver_type not in ["midpoint", "heun"]:
196
            if solver_type in ["logrho", "bh1", "bh2"]:
197
                self.register_to_config(solver_type="midpoint")
198
            else:
199
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
200

201
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
202
203
204
205
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
            )

206
207
208
209
210
211
212
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.sample = None
        self.order_list = self.get_order_list(num_train_timesteps)
213
        self._step_index = None
214
        self._begin_index = None
215
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
216
217
218
219
220
221
222

    def get_order_list(self, num_inference_steps: int) -> List[int]:
        """
        Computes the solver order at each time step.

        Args:
            num_inference_steps (`int`):
223
                The number of diffusion steps used when generating samples with a pre-trained model.
224
225
        """
        steps = num_inference_steps
226
        order = self.config.solver_order
227
228
        if order > 3:
            raise ValueError("Order > 3 is not supported by this scheduler")
229
        if self.config.lower_order_final:
230
231
232
233
234
235
236
237
238
            if order == 3:
                if steps % 3 == 0:
                    orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
                elif steps % 3 == 1:
                    orders = [1, 2, 3] * (steps // 3) + [1]
                else:
                    orders = [1, 2, 3] * (steps // 3) + [1, 2]
            elif order == 2:
                if steps % 2 == 0:
239
                    orders = [1, 2] * (steps // 2 - 1) + [1, 1]
240
241
242
243
244
245
246
247
248
249
250
251
252
                else:
                    orders = [1, 2] * (steps // 2) + [1]
            elif order == 1:
                orders = [1] * steps
        else:
            if order == 3:
                orders = [1, 2, 3] * (steps // 3)
            elif order == 2:
                orders = [1, 2] * (steps // 2)
            elif order == 1:
                orders = [1] * steps
        return orders

253
254
255
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
256
        The index counter for current timestep. It will increase 1 after each scheduler step.
257
258
259
        """
        return self._step_index

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

278
279
280
281
282
283
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
284
        """
285
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
286
287
288

        Args:
            num_inference_steps (`int`):
289
290
291
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
292
293
294
295
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
                passed, `num_inference_steps` must be `None`.
296
        """
297
298
299
300
301
302
303
304
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")

        num_inference_steps = num_inference_steps or len(timesteps)
305
        self.num_inference_steps = num_inference_steps
306
307
308
309
310
311
312
313
314
315
316
317
318

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
        else:
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
319

320
321
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
322
            log_sigmas = np.log(sigmas)
323
            sigmas = np.flip(sigmas).copy()
324
325
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
326
327
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
328
329

        if self.config.final_sigmas_type == "sigma_min":
330
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
331
332
333
334
335
336
337
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
            )
        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
338

339
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
340

341
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
342
343
        self.model_outputs = [None] * self.config.solver_order
        self.sample = None
Patrick von Platen's avatar
Patrick von Platen committed
344
345

        if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
346
            logger.warning(
347
                "Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
Patrick von Platen's avatar
Patrick von Platen committed
348
349
350
            )
            self.register_to_config(lower_order_final=True)

351
        if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
352
            logger.warning(
353
354
355
356
                " `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
            )
            self.register_to_config(lower_order_final=True)

Patrick von Platen's avatar
Patrick von Platen committed
357
        self.order_list = self.get_order_list(num_inference_steps)
358

359
360
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
361
        self._begin_index = None
362
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
363

364
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
365
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
366
367
368
369
370
371
372
373
374
375
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
376
        batch_size, channels, *remaining_dims = sample.shape
377
378
379
380
381

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
382
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
383
384
385
386
387
388
389
390
391
392

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

393
        sample = sample.reshape(batch_size, channels, *remaining_dims)
394
395
396
        sample = sample.to(dtype)

        return sample
397

398
399
400
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
401
        log_sigma = np.log(np.maximum(sigma, 1e-10))
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

422
423
424
425
426
427
428
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

429
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
430
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
431
432
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
447
448
449
450
451
452
453
454

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

455
    def convert_model_output(
456
        self,
457
        model_output: torch.Tensor,
458
        *args,
459
        sample: torch.Tensor = None,
460
        **kwargs,
461
    ) -> torch.Tensor:
462
        """
463
464
465
466
467
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>
468

469
470
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.
471

472
        </Tip>
473
474

        Args:
475
            model_output (`torch.Tensor`):
476
                The direct output from the learned diffusion model.
477
            sample (`torch.Tensor`):
478
                A current instance of a sample created by the diffusion process.
479
480

        Returns:
481
            `torch.Tensor`:
482
                The converted model output.
483
        """
484
485
486
487
488
489
490
491
492
493
494
495
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
496
        # DPM-Solver++ needs to solve an integral of the data prediction model.
497
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
498
            if self.config.prediction_type == "epsilon":
499
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
500
                if self.config.variance_type in ["learned", "learned_range"]:
501
                    model_output = model_output[:, :3]
502
503
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
504
505
506
507
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
508
509
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
510
511
512
513
514
515
516
517
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

            if self.config.thresholding:
518
519
                x0_pred = self._threshold_sample(x0_pred)

520
            return x0_pred
521

522
523
524
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
            if self.config.prediction_type == "epsilon":
525
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
526
527
528
529
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
530
            elif self.config.prediction_type == "sample":
531
532
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
533
534
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
535
536
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
537
538
539
540
541
542
543
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

544
545
546
547
548
549
550
551
            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

552
553
    def dpm_solver_first_order_update(
        self,
554
        model_output: torch.Tensor,
555
        *args,
556
        sample: torch.Tensor = None,
557
        noise: Optional[torch.Tensor] = None,
558
        **kwargs,
559
    ) -> torch.Tensor:
560
        """
561
        One step for the first-order DPMSolver (equivalent to DDIM).
562
563

        Args:
564
            model_output (`torch.Tensor`):
565
566
567
568
569
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
570
            sample (`torch.Tensor`):
571
                A current instance of a sample created by the diffusion process.
572
573

        Returns:
574
            `torch.Tensor`:
575
                The sample tensor at the previous timestep.
576
        """
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
602
603
604
605
606
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
607
608
609
610
611
612
613
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
614
615
616
617
        return x_t

    def singlestep_dpm_solver_second_order_update(
        self,
618
        model_output_list: List[torch.Tensor],
619
        *args,
620
        sample: torch.Tensor = None,
621
        noise: Optional[torch.Tensor] = None,
622
        **kwargs,
623
    ) -> torch.Tensor:
624
        """
625
626
        One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-2]`.
627
628

        Args:
629
            model_output_list (`List[torch.Tensor]`):
630
631
632
633
634
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
635
            sample (`torch.Tensor`):
636
                A current instance of a sample created by the diffusion process.
637
638

        Returns:
639
            `torch.Tensor`:
640
                The sample tensor at the previous timestep.
641
        """
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

676
        m0, m1 = model_output_list[-1], model_output_list[-2]
677

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m1, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
725
726
727
728
        return x_t

    def singlestep_dpm_solver_third_order_update(
        self,
729
        model_output_list: List[torch.Tensor],
730
        *args,
731
        sample: torch.Tensor = None,
732
        **kwargs,
733
    ) -> torch.Tensor:
734
        """
735
736
        One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-3]`.
737
738

        Args:
739
            model_output_list (`List[torch.Tensor]`):
740
741
742
743
744
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
745
            sample (`torch.Tensor`):
746
                A current instance of a sample created by diffusion process.
747
748

        Returns:
749
            `torch.Tensor`:
750
                The sample tensor at the previous timestep.
751
        """
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
779
        )
780
781
782
783
784
785
786
787
788
789
790
791
792

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m2
        D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
        D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
        D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                    - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
                )
        return x_t

    def singlestep_dpm_solver_update(
        self,
833
        model_output_list: List[torch.Tensor],
834
        *args,
835
        sample: torch.Tensor = None,
836
        order: int = None,
837
        noise: Optional[torch.Tensor] = None,
838
        **kwargs,
839
    ) -> torch.Tensor:
840
        """
841
        One step for the singlestep DPMSolver.
842
843

        Args:
844
            model_output_list (`List[torch.Tensor]`):
845
846
847
848
849
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
850
            sample (`torch.Tensor`):
851
                A current instance of a sample created by diffusion process.
852
            order (`int`):
853
                The solver order at this step.
854
855

        Returns:
856
            `torch.Tensor`:
857
                The sample tensor at the previous timestep.
858
        """
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

885
        if order == 1:
886
            return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise)
887
        elif order == 2:
888
            return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
889
        elif order == 3:
890
            return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample)
891
892
893
        else:
            raise ValueError(f"Order must be 1, 2, 3, got {order}")

894
895
896
897
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
898

899
        index_candidates = (schedule_timesteps == timestep).nonzero()
900
901
902
903
904
905
906
907
908
909
910
911

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

912
913
914
915
916
917
918
919
920
921
922
923
924
925
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
926

927
928
    def step(
        self,
929
        model_output: torch.Tensor,
930
        timestep: Union[int, torch.Tensor],
931
        sample: torch.Tensor,
932
        generator=None,
933
934
935
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
936
937
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the singlestep DPMSolver.
938
939

        Args:
940
            model_output (`torch.Tensor`):
941
942
943
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
944
            sample (`torch.Tensor`):
945
946
947
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
948
949

        Returns:
950
951
952
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
953
954
955
956
957
958
959

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

960
961
        if self.step_index is None:
            self._init_step_index(timestep)
962

963
        model_output = self.convert_model_output(model_output, sample=sample)
964
965
966
967
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

968
969
970
971
972
973
974
        if self.config.algorithm_type == "sde-dpmsolver++":
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

975
        order = self.order_list[self.step_index]
Patrick von Platen's avatar
Patrick von Platen committed
976
977
978
979
980
981

        #  For img2img denoising might start with order>1 which is not possible
        #  In this case make sure that the first two steps are both order=1
        while self.model_outputs[-order] is None:
            order -= 1

982
983
984
985
        # For single-step solvers, we use the initial value at each time with order = 1.
        if order == 1:
            self.sample = sample

986
987
988
        prev_sample = self.singlestep_dpm_solver_update(
            self.model_outputs, sample=self.sample, order=order, noise=noise
        )
989

990
        # upon completion increase step index by one, noise=noise
991
        self._step_index += 1
992
993
994
995
996
997

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

998
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
999
1000
1001
1002
1003
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1004
            sample (`torch.Tensor`):
1005
                The input sample.
1006
1007

        Returns:
1008
            `torch.Tensor`:
1009
                A scaled input sample.
1010
1011
1012
        """
        return sample

1013
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1014
1015
    def add_noise(
        self,
1016
1017
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1018
        timesteps: torch.IntTensor,
1019
    ) -> torch.Tensor:
1020
1021
1022
1023
1024
1025
1026
1027
1028
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1029

1030
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1031
1032
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1033
1034
1035
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1036
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1037
            # add noise is called before first denoising step to create initial latent(img2img)
1038
            step_indices = [self.begin_index] * timesteps.shape[0]
1039

1040
1041
1042
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1043

1044
1045
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1046
1047
1048
1049
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps