test_pipelines_common.py 85.1 KB
Newer Older
1
2
3
4
import contextlib
import gc
import inspect
import io
5
6
import json
import os
7
8
9
import re
import tempfile
import unittest
10
import uuid
Aryan's avatar
Aryan committed
11
from typing import Any, Callable, Dict, Union
12
13

import numpy as np
Anh71me's avatar
Anh71me committed
14
import PIL.Image
15
import torch
16
17
from huggingface_hub import ModelCard, delete_repo
from huggingface_hub.utils import is_jinja_available
18
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
19

20
import diffusers
21
22
23
24
25
26
27
28
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    DDIMScheduler,
    DiffusionPipeline,
    StableDiffusionPipeline,
29
    StableDiffusionXLPipeline,
30
31
    UNet2DConditionModel,
)
32
from diffusers.image_processor import VaeImageProcessor
Aryan's avatar
Aryan committed
33
from diffusers.loaders import IPAdapterMixin
34
from diffusers.models.attention_processor import AttnProcessor
35
from diffusers.models.controlnet_xs import UNetControlNetXSModel
36
37
38
39
from diffusers.models.unets.unet_3d_condition import UNet3DConditionModel
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet
from diffusers.models.unets.unet_motion_model import UNetMotionModel
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
40
from diffusers.schedulers import KarrasDiffusionSchedulers
41
from diffusers.utils import logging
42
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available
43
from diffusers.utils.testing_utils import CaptureLogger, require_torch, skip_mps, torch_device
44

45
from ..models.autoencoders.test_models_vae import (
46
47
48
49
50
    get_asym_autoencoder_kl_config,
    get_autoencoder_kl_config,
    get_autoencoder_tiny_config,
    get_consistency_vae_config,
)
Aryan's avatar
Aryan committed
51
from ..models.unets.test_models_unet_2d_condition import create_ip_adapter_state_dict
52
53
from ..others.test_utils import TOKEN, USER, is_staging_test

54

55
56
57
58
59
60
61
def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


62
63
64
65
66
def check_same_shape(tensor_list):
    shapes = [tensor.shape for tensor in tensor_list]
    return all(shape == shapes[0] for shape in shapes[1:])


67
68
69
70
71
72
class SDFunctionTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that inherit from StableDiffusionMixin, e.g. vae_slicing, vae_tiling, freeu, etc.
    """

73
    def test_vae_slicing(self, image_count=4):
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        # components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:  # fix batch size mismatch in I2V_Gen pipeline
            inputs["image"] = [inputs["image"]] * image_count
        output_1 = pipe(**inputs)

        # make sure sliced vae decode yields the same result
        pipe.enable_vae_slicing()
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:
            inputs["image"] = [inputs["image"]] * image_count
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)

        assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2

    def test_vae_tiling(self):
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        if "safety_checker" in components:
            components["safety_checker"] = None
        pipe = self.pipeline_class(**components)
105
        pipe = pipe.to(torch_device)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        output_1 = pipe(**inputs)[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)[0]

        assert np.abs(output_2 - output_1).max() < 5e-1

        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
YiYi Xu's avatar
YiYi Xu committed
124
125
126
127
        with torch.no_grad():
            for shape in shapes:
                zeros = torch.zeros(shape).to(torch_device)
                pipe.vae.decode(zeros)
128

129
130
    # MPS currently doesn't support ComplexFloats, which are required for freeU - see https://github.com/huggingface/diffusers/issues/7569.
    @skip_mps
131
132
133
134
135
136
137
138
    def test_freeu_enabled(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
139
140
        inputs["output_type"] = "np"

141
142
143
144
145
        output = pipe(**inputs)[0]

        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
146
147
        inputs["output_type"] = "np"

148
149
150
151
152
153
154
155
156
157
158
159
160
161
        output_freeu = pipe(**inputs)[0]

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."

    def test_freeu_disabled(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
162
163
        inputs["output_type"] = "np"

164
165
166
167
168
169
170
171
172
173
174
175
        output = pipe(**inputs)[0]

        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        pipe.disable_freeu()

        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
176
177
        inputs["output_type"] = "np"

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        output_no_freeu = pipe(**inputs)[0]
        assert np.allclose(
            output, output_no_freeu, atol=1e-2
        ), f"Disabling of FreeU should lead to results similar to the default pipeline results but Max Abs Error={np.abs(output_no_freeu - output).max()}."

    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image = pipe(**inputs)[0]
        original_image_slice = image[0, -3:, -3:, -1]

        pipe.fuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_fused = pipe(**inputs)[0]
        image_slice_fused = image_fused[0, -3:, -3:, -1]

        pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_disabled = pipe(**inputs)[0]
        image_slice_disabled = image_disabled[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."


Aryan's avatar
Aryan committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
class IPAdapterTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for pipelines that support IP Adapters.
    """

    def test_pipeline_signature(self):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        assert issubclass(self.pipeline_class, IPAdapterMixin)
        self.assertIn(
            "ip_adapter_image",
            parameters,
            "`ip_adapter_image` argument must be supported by the `__call__` method",
        )
        self.assertIn(
            "ip_adapter_image_embeds",
            parameters,
            "`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
        )

    def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
        return torch.randn((2, 1, cross_attention_dim), device=torch_device)

242
243
244
245
246
    def _get_dummy_masks(self, input_size: int = 64):
        _masks = torch.zeros((1, 1, input_size, input_size), device=torch_device)
        _masks[0, :, :, : int(input_size / 2)] = 1
        return _masks

Aryan's avatar
Aryan committed
247
248
249
250
251
252
253
254
255
    def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters
        if "image" in parameters.keys() and "strength" in parameters.keys():
            inputs["num_inference_steps"] = 4

        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

256
257
258
259
260
    def test_ip_adapter_single(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
        # Raising the tolerance for this test when it's run on a CPU because we
        # compare against static slices and that can be shaky (with a VVVV low probability).
        expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff

Aryan's avatar
Aryan committed
261
262
263
264
265
266
267
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
268
269
270
271
        if expected_pipe_slice is None:
            output_without_adapter = pipe(**inputs)[0]
        else:
            output_without_adapter = expected_pipe_slice
Aryan's avatar
Aryan committed
272
273
274
275
276
277
278
279
280

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
281
282
        if expected_pipe_slice is not None:
            output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
283
284
285
286
287
288

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
289
290
        if expected_pipe_slice is not None:
            output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
        )

    def test_ip_adapter_multi(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]

        adapter_state_dict_1 = create_ip_adapter_state_dict(pipe.unet)
        adapter_state_dict_2 = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])

        # forward pass with multi ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([0.0, 0.0])
        output_without_multi_adapter_scale = pipe(**inputs)[0]

        # forward pass with multi ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([42.0, 42.0])
        output_with_multi_adapter_scale = pipe(**inputs)[0]

        max_diff_without_multi_adapter_scale = np.abs(
            output_without_multi_adapter_scale - output_without_adapter
        ).max()
        max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
        self.assertLess(
            max_diff_without_multi_adapter_scale,
            expected_max_diff,
            "Output without multi-ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_multi_adapter_scale,
            1e-2,
            "Output with multi-ip-adapter scale must be different from normal inference",
        )

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    def test_ip_adapter_cfg(self, expected_max_diff: float = 1e-4):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        if "guidance_scale" not in parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)
        pipe.set_ip_adapter_scale(1.0)

        # forward pass with CFG not applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)[0].unsqueeze(0)]
        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        # forward pass with CFG applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    def test_ip_adapter_masks(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)
        sample_size = pipe.unet.config.get("sample_size", 32)
        block_out_channels = pipe.vae.config.get("block_out_channels", [128, 256, 512, 512])
        input_size = sample_size * (2 ** (len(block_out_channels) - 1))

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]
        output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten()

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter and masks, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
        output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with single ip adapter and masks, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
        output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference"
        )

Aryan's avatar
Aryan committed
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
class PipelineLatentTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that has vae, e.g.
    equivalence of different input and output types, etc.
    """

    @property
    def image_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_params` in the child test class. "
            "`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
        )

434
435
436
437
438
439
440
    @property
    def image_latents_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_latents_params` in the child test class. "
            "`image_latents_params` are tested for if passing latents directly are producing same results"
        )

441
442
443
    def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
        inputs = self.get_dummy_inputs(device, seed)

444
445
446
447
448
449
450
451
452
453
454
455
        def convert_to_pt(image):
            if isinstance(image, torch.Tensor):
                input_image = image
            elif isinstance(image, np.ndarray):
                input_image = VaeImageProcessor.numpy_to_pt(image)
            elif isinstance(image, PIL.Image.Image):
                input_image = VaeImageProcessor.pil_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pt(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {type(image)}")
            return input_image

456
457
458
459
460
461
462
463
464
465
466
467
468
469
        def convert_pt_to_type(image, input_image_type):
            if input_image_type == "pt":
                input_image = image
            elif input_image_type == "np":
                input_image = VaeImageProcessor.pt_to_numpy(image)
            elif input_image_type == "pil":
                input_image = VaeImageProcessor.pt_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pil(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {input_image_type}.")
            return input_image

        for image_param in self.image_params:
            if image_param in inputs.keys():
470
471
472
                inputs[image_param] = convert_pt_to_type(
                    convert_to_pt(inputs[image_param]).to(device), input_image_type
                )
473
474
475
476
477

        inputs["output_type"] = output_type

        return inputs

478
    def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
479
480
481
        self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)

    def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
482
483
484
485
486
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

487
488
489
490
491
492
493
494
495
        output_pt = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
        )[0]
        output_np = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
        )[0]
        output_pil = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
        )[0]
496
497

        max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
498
499
500
        self.assertLess(
            max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
        )
501
502

        max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
503
        self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

    def test_pt_np_pil_inputs_equivalent(self):
        if len(self.image_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
        out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
        out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]

        max_diff = np.abs(out_input_pt - out_input_np).max()
        self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
        max_diff = np.abs(out_input_pil - out_input_np).max()
        self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    def test_latents_input(self):
        if len(self.image_latents_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]

        vae = components["vae"]
        inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
        generator = inputs["generator"]
        for image_param in self.image_latents_params:
            if image_param in inputs.keys():
                inputs[image_param] = (
                    vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
                )
        out_latents_inputs = pipe(**inputs)[0]

        max_diff = np.abs(out - out_latents_inputs).max()
        self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    def test_multi_vae(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        block_out_channels = pipe.vae.config.block_out_channels
        norm_num_groups = pipe.vae.config.norm_num_groups

        vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny]
        configs = [
            get_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_consistency_vae_config(block_out_channels, norm_num_groups),
            get_autoencoder_tiny_config(block_out_channels),
        ]

        out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

        for vae_cls, config in zip(vae_classes, configs):
            vae = vae_cls(**config)
            vae = vae.to(torch_device)
            components["vae"] = vae
            vae_pipe = self.pipeline_class(**components)
            out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

            assert out_vae_np.shape == out_np.shape

576

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
@require_torch
class PipelineFromPipeTesterMixin:
    @property
    def original_pipeline_class(self):
        if "xl" in self.pipeline_class.__name__.lower():
            original_pipeline_class = StableDiffusionXLPipeline
        else:
            original_pipeline_class = StableDiffusionPipeline

        return original_pipeline_class

    def get_dummy_inputs_pipe(self, device, seed=0):
        inputs = self.get_dummy_inputs(device, seed=seed)
        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

    def get_dummy_inputs_for_pipe_original(self, device, seed=0):
        inputs = {}
        for k, v in self.get_dummy_inputs_pipe(device, seed=seed).items():
            if k in set(inspect.signature(self.original_pipeline_class.__call__).parameters.keys()):
                inputs[k] = v
        return inputs

    def test_from_pipe_consistent_config(self):
        if self.original_pipeline_class == StableDiffusionPipeline:
            original_repo = "hf-internal-testing/tiny-stable-diffusion-pipe"
            original_kwargs = {"requires_safety_checker": False}
        elif self.original_pipeline_class == StableDiffusionXLPipeline:
            original_repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
            original_kwargs = {"requires_aesthetics_score": True, "force_zeros_for_empty_prompt": False}
        else:
            raise ValueError(
                "original_pipeline_class must be either StableDiffusionPipeline or StableDiffusionXLPipeline"
            )

        # create original_pipeline_class(sd/sdxl)
        pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)

        # original_pipeline_class(sd/sdxl) -> pipeline_class
        pipe_components = self.get_dummy_components()
        pipe_additional_components = {}
        for name, component in pipe_components.items():
            if name not in pipe_original.components:
                pipe_additional_components[name] = component

        pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)

        # pipeline_class -> original_pipeline_class(sd/sdxl)
        original_pipe_additional_components = {}
        for name, component in pipe_original.components.items():
            if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
                original_pipe_additional_components[name] = component

        pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)

        # compare the config
        original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
        original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
        assert original_config_2 == original_config

    def test_from_pipe_consistent_forward_pass(self, expected_max_diff=1e-3):
        components = self.get_dummy_components()
        original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)

        # pipeline components that are also expected to be in the original pipeline
        original_pipe_components = {}
        # additional components that are not in the pipeline, but expected in the original pipeline
        original_pipe_additional_components = {}
        # additional components that are in the pipeline, but not expected in the original pipeline
        current_pipe_additional_components = {}

        for name, component in components.items():
            if name in original_expected_modules:
                original_pipe_components[name] = component
            else:
                current_pipe_additional_components[name] = component
        for name in original_expected_modules:
            if name not in original_pipe_components:
                if name in self.original_pipeline_class._optional_components:
                    original_pipe_additional_components[name] = None
                else:
                    raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")

        pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
        for component in pipe_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe_original.to(torch_device)
        pipe_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
        output_original = pipe_original(**inputs)[0]

        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output = pipe(**inputs)[0]

        pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
        pipe_from_original.to(torch_device)
        pipe_from_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output_from_original = pipe_from_original(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
        self.assertLess(
            max_diff,
            expected_max_diff,
            "The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
        )

        inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
        output_original_2 = pipe_original(**inputs)[0]

        max_diff = np.abs(to_np(output_original) - to_np(output_original_2)).max()
        self.assertLess(max_diff, expected_max_diff, "`from_pipe` should not change the output of original pipeline.")

        for component in pipe_original.components.values():
            if hasattr(component, "attn_processors"):
                assert all(
                    type(proc) == AttnProcessor for proc in component.attn_processors.values()
                ), "`from_pipe` changed the attention processor in original pipeline."

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
    )
    def test_from_pipe_consistent_forward_pass_cpu_offload(self, expected_max_diff=1e-3):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output = pipe(**inputs)[0]

        original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)
        # pipeline components that are also expected to be in the original pipeline
        original_pipe_components = {}
        # additional components that are not in the pipeline, but expected in the original pipeline
        original_pipe_additional_components = {}
        # additional components that are in the pipeline, but not expected in the original pipeline
        current_pipe_additional_components = {}
        for name, component in components.items():
            if name in original_expected_modules:
                original_pipe_components[name] = component
            else:
                current_pipe_additional_components[name] = component
        for name in original_expected_modules:
            if name not in original_pipe_components:
                if name in self.original_pipeline_class._optional_components:
                    original_pipe_additional_components[name] = None
                else:
                    raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")

        pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
        for component in pipe_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe_original.set_progress_bar_config(disable=None)
        pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
        pipe_from_original.enable_model_cpu_offload()
        pipe_from_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output_from_original = pipe_from_original(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
        self.assertLess(
            max_diff,
            expected_max_diff,
            "The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
        )


757
758
759
760
761
762
763
764
@require_torch
class PipelineKarrasSchedulerTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers
    equivalence of dict and tuple outputs, etc.
    """

765
766
767
    def test_karras_schedulers_shape(
        self, num_inference_steps_for_strength=4, num_inference_steps_for_strength_for_iterations=5
    ):
768
769
770
771
772
773
774
775
776
777
778
779
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        # make sure that PNDM does not need warm-up
        pipe.scheduler.register_to_config(skip_prk_steps=True)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 2

        if "strength" in inputs:
780
            inputs["num_inference_steps"] = num_inference_steps_for_strength
781
782
783
784
785
            inputs["strength"] = 0.5

        outputs = []
        for scheduler_enum in KarrasDiffusionSchedulers:
            if "KDPM2" in scheduler_enum.name:
786
                inputs["num_inference_steps"] = num_inference_steps_for_strength_for_iterations
787
788
789
790
791
792
793
794
795
796
797
798

            scheduler_cls = getattr(diffusers, scheduler_enum.name)
            pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
            output = pipe(**inputs)[0]
            outputs.append(output)

            if "KDPM2" in scheduler_enum.name:
                inputs["num_inference_steps"] = 2

        assert check_same_shape(outputs)


799
800
801
802
803
804
805
806
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

807
808
809
810
811
812
813
814
815
816
817
818
819
    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
        ]
    )
820

821
822
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
823

824
825
    test_xformers_attention = True

826
827
828
829
830
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

850
851
852
853
854
    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
855
            " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

879
880
881
882
883
884
885
886
887
    @property
    def callback_cfg_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `callback_cfg_params` in the child test class that requires to run test_callback_cfg. "
            "`callback_cfg_params` are the parameters that needs to be passed to the pipeline's callback "
            "function when dynamically adjusting `guidance_scale`. They are variables that require special"
            "treatment when `do_classifier_free_guidance` is `True`. `pipeline_params.py` provides some common"
            " sets of parameters such as `TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS`. If your pipeline's "
            "set of cfg arguments has minor changes from one of the common sets of cfg arguments, "
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
888
            "do not make modifications to the existing common sets of cfg arguments. I.e. for inpaint pipeline, you "
889
890
891
892
            " need to adjust batch size of `mask` and `masked_image_latents` so should set the attribute as"
            "`callback_cfg_params = TEXT_TO_IMAGE_CFG_PARAMS.union({'mask', 'masked_image_latents'})`"
        )

893
894
895
896
897
898
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

899
900
901
902
903
904
    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

905
    def test_save_load_local(self, expected_max_difference=5e-4):
906
907
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
908
909
910
911
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

912
913
914
915
916
917
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

918
919
920
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(diffusers.logging.INFO)

921
        with tempfile.TemporaryDirectory() as tmpdir:
922
            pipe.save_pretrained(tmpdir, safe_serialization=False)
923
924
925
926

            with CaptureLogger(logger) as cap_logger:
                pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)

927
928
929
930
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()

931
932
933
934
            for name in pipe_loaded.components.keys():
                if name not in pipe_loaded._optional_components:
                    assert name in str(cap_logger)

935
936
937
938
939
940
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

941
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
942
        self.assertLess(max_diff, expected_max_difference)
943

944
945
946
947
948
    def test_pipeline_call_signature(self):
        self.assertTrue(
            hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        )

949
950
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        optional_parameters = set()

        for k, v in parameters.items():
            if v.default != inspect._empty:
                optional_parameters.add(k)

        parameters = set(parameters.keys())
        parameters.remove("self")
        parameters.discard("kwargs")  # kwargs can be added if arguments of pipeline call function are deprecated

        remaining_required_parameters = set()

        for param in self.params:
            if param not in parameters:
                remaining_required_parameters.add(param)
966

967
968
969
970
971
972
        self.assertTrue(
            len(remaining_required_parameters) == 0,
            f"Required parameters not present: {remaining_required_parameters}",
        )

        remaining_required_optional_parameters = set()
973

974
        for param in self.required_optional_params:
975
976
977
978
979
980
981
            if param not in optional_parameters:
                remaining_required_optional_parameters.add(param)

        self.assertTrue(
            len(remaining_required_optional_parameters) == 0,
            f"Required optional parameters not present: {remaining_required_optional_parameters}",
        )
982

983
    def test_inference_batch_consistent(self, batch_sizes=[2]):
984
        self._test_inference_batch_consistent(batch_sizes=batch_sizes)
985

986
    def _test_inference_batch_consistent(
Will Berman's avatar
Will Berman committed
987
        self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
988
    ):
989
990
991
992
993
994
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
995
        inputs["generator"] = self.get_generator(0)
996
997
998
999

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

1000
1001
        # prepare batched inputs
        batched_inputs = []
1002
        for batch_size in batch_sizes:
1003
1004
            batched_input = {}
            batched_input.update(inputs)
1005

1006
1007
1008
            for name in self.batch_params:
                if name not in inputs:
                    continue
1009

1010
1011
1012
1013
1014
                value = inputs[name]
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
1015

1016
1017
                    # make last batch super long
                    batched_input[name][-1] = 100 * "very long"
1018

1019
1020
                else:
                    batched_input[name] = batch_size * [value]
1021

Will Berman's avatar
Will Berman committed
1022
            if batch_generator and "generator" in inputs:
1023
                batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
1024

1025
1026
            if "batch_size" in inputs:
                batched_input["batch_size"] = batch_size
1027

1028
            batched_inputs.append(batched_input)
1029
1030

        logger.setLevel(level=diffusers.logging.WARNING)
1031
1032
1033
        for batch_size, batched_input in zip(batch_sizes, batched_inputs):
            output = pipe(**batched_input)
            assert len(output[0]) == batch_size
1034

1035
1036
    def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
        self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
1037
1038

    def _test_inference_batch_single_identical(
1039
        self,
1040
        batch_size=2,
1041
        expected_max_diff=1e-4,
1042
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
1043
    ):
1044
1045
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1046
1047
1048
1049
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

1050
1051
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1052
1053
1054
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)
1055
1056
1057
1058
1059
1060

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
1061
        batched_inputs.update(inputs)
1062

1063
1064
1065
        for name in self.batch_params:
            if name not in inputs:
                continue
1066

1067
1068
1069
1070
1071
            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"
1072

1073
1074
            else:
                batched_inputs[name] = batch_size * [value]
1075

1076
1077
        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
1078

1079
1080
1081
1082
1083
        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]
1084
1085

        output = pipe(**inputs)
1086
        output_batch = pipe(**batched_inputs)
1087

1088
        assert output_batch[0].shape[0] == batch_size
1089

YiYi Xu's avatar
YiYi Xu committed
1090
        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
1091
        assert max_diff < expected_max_diff
1092

1093
    def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4):
1094
1095
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1096
1097
1098
1099
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1100
1101
1102
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1103
        generator_device = "cpu"
1104
1105
1106
1107
1108
        if expected_slice is None:
            output = pipe(**self.get_dummy_inputs(generator_device))[0]
        else:
            output = expected_slice

1109
        output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]
1110

1111
1112
1113
1114
1115
1116
1117
1118
        if expected_slice is None:
            max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
        else:
            if output_tuple.ndim != 5:
                max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max()
            else:
                max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max()

1119
        self.assertLess(max_diff, expected_max_difference)
1120
1121
1122

    def test_components_function(self):
        init_components = self.get_dummy_components()
Kashif Rasul's avatar
Kashif Rasul committed
1123
1124
        init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))}

1125
1126
1127
1128
1129
1130
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
1131
    def test_float16_inference(self, expected_max_diff=5e-2):
1132
1133
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1134
1135
1136
1137
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1138
1139
1140
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

YiYi Xu's avatar
YiYi Xu committed
1141
        components = self.get_dummy_components()
1142
        pipe_fp16 = self.pipeline_class(**components)
1143
1144
1145
1146
        for component in pipe_fp16.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1147
        pipe_fp16.to(torch_device, torch.float16)
1148
1149
        pipe_fp16.set_progress_bar_config(disable=None)

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in inputs:
            inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)[0]

        fp16_inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in fp16_inputs:
            fp16_inputs["generator"] = self.get_generator(0)

        output_fp16 = pipe_fp16(**fp16_inputs)[0]
1163

1164
        max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
1165
        self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
1166
1167

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
1168
    def test_save_load_float16(self, expected_max_diff=1e-2):
1169
1170
1171
1172
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
1173

1174
        pipe = self.pipeline_class(**components)
1175
1176
1177
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1178
1179
1180
1181
1182
1183
1184
1185
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
1186
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
1187
1188
1189
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]
1202
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1203
1204
1205
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )
1206

1207
    def test_save_load_optional_components(self, expected_max_difference=1e-4):
1208
1209
1210
1211
1212
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1213
1214
1215
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1216
1217
1218
1219
1220
1221
1222
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

Dhruv Nair's avatar
Dhruv Nair committed
1223
1224
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1225
1226
1227
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
1228
            pipe.save_pretrained(tmpdir, safe_serialization=False)
1229
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
1230
1231
1232
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
1233
1234
1235
1236
1237
1238
1239
1240
1241
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

Dhruv Nair's avatar
Dhruv Nair committed
1242
        inputs = self.get_dummy_inputs(generator_device)
1243
1244
        output_loaded = pipe_loaded(**inputs)[0]

1245
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1246
        self.assertLess(max_diff, expected_max_difference)
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
1266
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
1267

1268
1269
1270
1271
1272
1273
1274
1275
    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

1276
        pipe.to(dtype=torch.float16)
1277
1278
1279
        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

1280
1281
    def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
        self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
1282

1283
1284
1285
    def _test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
1286
1287
1288
1289
1290
        if not self.test_attention_slicing:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1291
1292
1293
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1294
1295
1296
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1297
1298
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1299
1300
1301
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
1302
        inputs = self.get_dummy_inputs(generator_device)
1303
1304
        output_with_slicing = pipe(**inputs)[0]

1305
        if test_max_difference:
1306
            max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max()
1307
            self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results")
1308

1309
        if test_mean_pixel_difference:
YiYi Xu's avatar
YiYi Xu committed
1310
            assert_mean_pixel_difference(to_np(output_with_slicing[0]), to_np(output_without_slicing[0]))
1311
1312

    @unittest.skipIf(
1313
1314
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
1315
    )
1316
    def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
1317
1318
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1319
1320
1321
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1322
1323
1324
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1325
1326
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1327
1328
1329
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.17.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.17.0` or higher",
    )
    def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(generator_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_model_cpu_offload()
        inputs = self.get_dummy_inputs(generator_device)
1358
1359
        output_with_offload = pipe(**inputs)[0]

1360
        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1361
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
1362
1363
1364
1365
1366
        offloaded_modules = [
            v
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
        ]
1367
1368
1369
1370
        (
            self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)),
            f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}",
        )
1371

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.17.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.17.0` or higher",
    )
    def test_cpu_offload_forward_pass_twice(self, expected_max_diff=2e-4):
        import accelerate

        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.set_progress_bar_config(disable=None)

        pipe.enable_model_cpu_offload()
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

        pipe.enable_model_cpu_offload()
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload_twice = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
        self.assertLess(
            max_diff, expected_max_diff, "running CPU offloading 2nd time should not affect the inference results"
        )
YiYi Xu's avatar
YiYi Xu committed
1401
1402
        offloaded_modules = {
            k: v
1403
1404
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
YiYi Xu's avatar
YiYi Xu committed
1405
1406
1407
1408
        }
        self.assertTrue(
            all(v.device.type == "cpu" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}",
1409
1410
        )

YiYi Xu's avatar
YiYi Xu committed
1411
1412
1413
1414
1415
1416
1417
1418
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload):
                offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)

        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
        )

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
    )
    def test_sequential_offload_forward_pass_twice(self, expected_max_diff=2e-4):
        import accelerate

        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.set_progress_bar_config(disable=None)

        pipe.enable_sequential_cpu_offload()
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

1442
        pipe.enable_sequential_cpu_offload()
1443
1444
1445
1446
1447
1448
1449
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload_twice = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
        self.assertLess(
            max_diff, expected_max_diff, "running sequential offloading second time should have the inference results"
        )
YiYi Xu's avatar
YiYi Xu committed
1450
1451
        offloaded_modules = {
            k: v
1452
1453
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
YiYi Xu's avatar
YiYi Xu committed
1454
1455
1456
1457
        }
        self.assertTrue(
            all(v.device.type == "meta" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}",
1458
        )
YiYi Xu's avatar
YiYi Xu committed
1459
1460
1461
1462
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook):
                offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)
1463

YiYi Xu's avatar
YiYi Xu committed
1464
1465
1466
        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1467
1468
        )

1469
1470
1471
1472
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
1473
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
1474
1475
        self._test_xformers_attention_forwardGenerator_pass()

1476
1477
1478
    def _test_xformers_attention_forwardGenerator_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4
    ):
1479
1480
1481
1482
1483
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1484
1485
1486
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1487
1488
1489
1490
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
1491
        output_without_offload = pipe(**inputs)[0]
1492
1493
1494
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )
1495
1496
1497

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
1498
        output_with_offload = pipe(**inputs)[0]
1499
1500
1501
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )
1502

Will Berman's avatar
Will Berman committed
1503
        if test_max_difference:
1504
            max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1505
            self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
Will Berman's avatar
Will Berman committed
1506

1507
1508
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
1531

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
    def test_num_images_per_prompt(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "num_images_per_prompt" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

1554
                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
1555
1556
1557

                assert images.shape[0] == batch_size * num_images_per_prompt

1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
    def test_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
    def test_callback_inputs(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_inputs_subset(pipe, i, t, callback_kwargs):
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1597
            # iterate over callback args
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        def callback_inputs_all(pipe, i, t, callback_kwargs):
            for tensor_name in pipe._callback_tensor_inputs:
                assert tensor_name in callback_kwargs

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1608
            # iterate over callback args
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # Test passing in a subset
        inputs["callback_on_step_end"] = callback_inputs_subset
        inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        # Test passing in a everything
        inputs["callback_on_step_end"] = callback_inputs_all
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
            is_last = i == (pipe.num_timesteps - 1)
            if is_last:
                callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
            return callback_kwargs

        inputs["callback_on_step_end"] = callback_inputs_change_tensor
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]
        assert output.abs().sum() == 0

    def test_callback_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_increase_guidance(pipe, i, t, callback_kwargs):
            pipe._guidance_scale += 1.0

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # use cfg guidance because some pipelines modify the shape of the latents
        # outside of the denoising loop
        inputs["guidance_scale"] = 2.0
        inputs["callback_on_step_end"] = callback_increase_guidance
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        _ = pipe(**inputs)[0]

        # we increase the guidance scale by 1.0 at every step
        # check that the guidance scale is increased by the number of scheduler timesteps
        # accounts for models that modify the number of inference steps based on strength
        assert pipe.guidance_scale == (inputs["guidance_scale"] + pipe.num_timesteps)

1680
1681
1682
1683
1684
1685
1686
1687
1688
    def test_StableDiffusionMixin_component(self):
        """Any pipeline that have LDMFuncMixin should have vae and unet components."""
        if not issubclass(self.pipeline_class, StableDiffusionMixin):
            return
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        self.assertTrue(hasattr(pipe, "vae") and isinstance(pipe.vae, (AutoencoderKL, AutoencoderTiny)))
        self.assertTrue(
            hasattr(pipe, "unet")
1689
1690
1691
1692
            and isinstance(
                pipe.unet,
                (UNet2DConditionModel, UNet3DConditionModel, I2VGenXLUNet, UNetMotionModel, UNetControlNetXSModel),
            )
1693
1694
        )

1695

1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
@is_staging_test
class PipelinePushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-pipeline-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def get_pipeline_components(self):
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)

        with tempfile.TemporaryDirectory() as tmpdir:
            dummy_vocab = {"<|startoftext|>": 0, "<|endoftext|>": 1, "!": 2}
            vocab_path = os.path.join(tmpdir, "vocab.json")
            with open(vocab_path, "w") as f:
                json.dump(dummy_vocab, f)

            merges = "Ġ t\nĠt h"
            merges_path = os.path.join(tmpdir, "merges.txt")
            with open(merges_path, "w") as f:
                f.writelines(merges)
            tokenizer = CLIPTokenizer(vocab_file=vocab_path, merges_file=merges_path)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def test_push_to_hub(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
1829
1830


1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
# For SDXL and its derivative pipelines (such as ControlNet), we have the text encoders
# and the tokenizers as optional components. So, we need to override the `test_save_load_optional_components()`
# test for all such pipelines. This requires us to use a custom `encode_prompt()` function.
class SDXLOptionalComponentsTesterMixin:
    def encode_prompt(
        self, tokenizers, text_encoders, prompt: str, num_images_per_prompt: int = 1, negative_prompt: str = None
    ):
        device = text_encoders[0].device

        if isinstance(prompt, str):
            prompt = [prompt]
        batch_size = len(prompt)

        prompt_embeds_list = []
        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )

            text_input_ids = text_inputs.input_ids

            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            prompt_embeds_list.append(prompt_embeds)

        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        if negative_prompt is None:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        else:
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            negative_prompt_embeds_list = []
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True)
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        bs_embed, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # for classifier-free guidance
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        # for classifier-free guidance
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def _test_save_load_optional_components(self, expected_max_difference=1e-4):
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)

        tokenizer = components.pop("tokenizer")
        tokenizer_2 = components.pop("tokenizer_2")
        text_encoder = components.pop("text_encoder")
        text_encoder_2 = components.pop("text_encoder_2")

        tokenizers = [tokenizer, tokenizer_2] if tokenizer is not None else [tokenizer_2]
        text_encoders = [text_encoder, text_encoder_2] if text_encoder is not None else [text_encoder_2]
        prompt = inputs.pop("prompt")
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(tokenizers, text_encoders, prompt)
        inputs["prompt_embeds"] = prompt_embeds
        inputs["negative_prompt_embeds"] = negative_prompt_embeds
        inputs["pooled_prompt_embeds"] = pooled_prompt_embeds
        inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(generator_device)
        _ = inputs.pop("prompt")
        inputs["prompt_embeds"] = prompt_embeds
        inputs["negative_prompt_embeds"] = negative_prompt_embeds
        inputs["pooled_prompt_embeds"] = pooled_prompt_embeds
        inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, expected_max_difference)


1975
1976
1977
# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
1978
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
1979
1980
1981
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
1982
    assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"