configuration_utils.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Patrick von Platen's avatar
Patrick von Platen committed
16
""" ConfigMixinuration base class and utilities."""
17
import dataclasses
18
import functools
Patrick von Platen's avatar
improve  
Patrick von Platen committed
19
import inspect
20
21
22
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
23
from collections import OrderedDict
24
25
from typing import Any, Dict, Tuple, Union

26
from huggingface_hub import hf_hub_download
27
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
Patrick von Platen's avatar
Patrick von Platen committed
28
from requests import HTTPError
29

Patrick von Platen's avatar
Patrick von Platen committed
30
from . import __version__
31
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
32

33

34
35
36
37
38
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


Patrick von Platen's avatar
Patrick von Platen committed
39
class ConfigMixin:
40
    r"""
Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44
45
46
47
    Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
    methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
        - [`~ConfigMixin.from_config`]
        - [`~ConfigMixin.save_config`]

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
48
          [`~ConfigMixin.save_config`] (should be overridden by parent class).
Patrick von Platen's avatar
Patrick von Platen committed
49
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
50
          overridden by parent class).
51
    """
52
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
53
    ignore_for_config = []
54

55
    def register_to_config(self, **kwargs):
56
57
58
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
        kwargs["_class_name"] = self.__class__.__name__
59
60
        kwargs["_diffusers_version"] = __version__

61
62
63
64
65
66
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err
67

Patrick von Platen's avatar
Patrick von Platen committed
68
69
70
71
72
73
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
74

Patrick von Platen's avatar
Patrick von Platen committed
75
        self._internal_dict = FrozenDict(internal_dict)
76

77
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
78
79
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
Patrick von Platen's avatar
Patrick von Platen committed
80
        [`~ConfigMixin.from_config`] class method.
81
82
83
84
85
86
87
88
89
90

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

91
92
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
93

94
        self.to_json_file(output_config_file)
Patrick von Platen's avatar
Patrick von Platen committed
95
        logger.info(f"ConfigMixinuration saved in {output_config_file}")
96

97
98
    @classmethod
    def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        r"""
        Instantiate a Python class from a pre-defined JSON-file.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
                      organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
                      `./my_model_directory/`.

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
                Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
                as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
                checkpoint with 3 labels).
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
128
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133
134
135
136
137
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
138
139
140
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        <Tip>

        Passing `use_auth_token=True`` is required when you want to use a private model.

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.

        </Tip>

        """
Patrick von Platen's avatar
Patrick von Platen committed
156
        config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
157
158
        init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)

159
160
161
162
        # Allow dtype to be specified on initialization
        if "dtype" in unused_kwargs:
            init_dict["dtype"] = unused_kwargs.pop("dtype")

163
164
165
166
167
168
169
        model = cls(**init_dict)

        if return_unused_kwargs:
            return model, unused_kwargs
        else:
            return model

170
    @classmethod
Patrick von Platen's avatar
Patrick von Platen committed
171
172
    def get_config_dict(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
173
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
174
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
175
176
177
178
179
180
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
181
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
182
        subfolder = kwargs.pop("subfolder", None)
183
184
185
186
187

        user_agent = {"file_type": "config"}

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

188
189
190
191
192
193
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )

194
195
196
197
198
199
        if os.path.isfile(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
            if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
Patrick von Platen's avatar
Patrick von Platen committed
200
201
202
203
            elif subfolder is not None and os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
204
            else:
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
221
                    subfolder=subfolder,
222
                    revision=revision,
223
224
                )

225
226
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
227
228
229
230
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
                    " token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
                    " login` and pass `use_auth_token=True`."
231
232
233
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
237
238
239
240
241
242
243
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
244
245
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
246
247
248
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
249
250
251
252
253
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
254
255
256
257
258
259
260
261
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
262

263
264
265
266
        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(config_file)
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
267
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
268

patil-suraj's avatar
patil-suraj committed
269
        return config_dict
270

patil-suraj's avatar
patil-suraj committed
271
272
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
273
274
        expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
275
276
277
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Yuta Hayashibe's avatar
Yuta Hayashibe committed
278
        # remove flax internal keys
279
280
281
282
        if hasattr(cls, "_flax_internal_args"):
            for arg in cls._flax_internal_args:
                expected_keys.remove(arg)

Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
patil-suraj's avatar
patil-suraj committed
286
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
287
288
289
        for key in expected_keys:
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
290
291
292
293
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
294

295
296
297
298
299
300
301
302
303
304
        config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}

        if len(config_dict) > 0:
            logger.warning(
                f"The config attributes {config_dict} were passed to {cls.__name__}, "
                "but are not expected and will be ignored. Please verify your "
                f"{cls.config_name} configuration file."
            )

        unused_kwargs = {**config_dict, **kwargs}
anton-l's avatar
Style  
anton-l committed
305

patil-suraj's avatar
patil-suraj committed
306
        passed_keys = set(init_dict.keys())
307
        if len(expected_keys - passed_keys) > 0:
308
            logger.info(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
309
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
310
            )
311

patil-suraj's avatar
patil-suraj committed
312
        return init_dict, unused_kwargs
Patrick von Platen's avatar
Patrick von Platen committed
313

314
315
316
317
318
319
    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

anton-l's avatar
anton-l committed
320
    def __repr__(self):
321
        return f"{self.__class__.__name__} {self.to_json_string()}"
322

323
324
    @property
    def config(self) -> Dict[str, Any]:
Patrick von Platen's avatar
Patrick von Platen committed
325
        return self._internal_dict
326

327
    def to_json_string(self) -> str:
328
329
330
331
332
333
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
334
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
335
336
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

337
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
338
339
340
341
342
343
344
345
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
346
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378


class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)
379
380
381


def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
382
383
384
385
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
        init(self, *args, **init_kwargs)
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
        getattr(self, "register_to_config")(**new_kwargs)

    return inner_init
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462


def flax_register_to_config(cls):
    original_init = cls.__init__

    @functools.wraps(original_init)
    def init(self, *args, **kwargs):
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        # Ignore private kwargs in the init. Retrieve all passed attributes
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}

        # Retrieve default values
        fields = dataclasses.fields(self)
        default_kwargs = {}
        for field in fields:
            # ignore flax specific attributes
            if field.name in self._flax_internal_args:
                continue
            if type(field.default) == dataclasses._MISSING_TYPE:
                default_kwargs[field.name] = None
            else:
                default_kwargs[field.name] = getattr(self, field.name)

        # Make sure init_kwargs override default kwargs
        new_kwargs = {**default_kwargs, **init_kwargs}

        # Get positional arguments aligned with kwargs
        for i, arg in enumerate(args):
            name = fields[i].name
            new_kwargs[name] = arg

        getattr(self, "register_to_config")(**new_kwargs)
        original_init(self, *args, **kwargs)

    cls.__init__ = init
    return cls