scheduling_ddpm.py 6.4 KB
Newer Older
1
# Copyright 2022 UC Berkely Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from typing import Union
Patrick von Platen's avatar
Patrick von Platen committed
19

Patrick von Platen's avatar
Patrick von Platen committed
20
import numpy as np
21
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
from ..configuration_utils import ConfigMixin
24
25
26
27
28
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
31

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
35
36
37
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
38

39
40
41
42
43
44
45
46
47
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
48
49


Patrick von Platen's avatar
Patrick von Platen committed
50
class DDPMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
51
52
53
54
55
56
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
57
58
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
59
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
60
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
61
        tensor_format="np",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
62
63
    ):
        super().__init__()
64
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
65
66
67
68
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
69
70
            trained_betas=trained_betas,
            timestep_values=timestep_values,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
71
            variance_type=variance_type,
Patrick von Platen's avatar
Patrick von Platen committed
72
            clip_sample=clip_sample,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
73
74
        )

75
76
77
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
78
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
anton-l's avatar
anton-l committed
79
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
80
            # Glide cosine schedule
81
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
82
83
84
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

91
    def get_variance(self, t, variance_type=None):
92
93
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
94

Kashif Rasul's avatar
Kashif Rasul committed
95
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
96
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
97
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
98
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
99

100
101
102
        if variance_type is None:
            variance_type = self.config.variance_type

Patrick von Platen's avatar
Patrick von Platen committed
103
        # hacks - were probs added for training stability
104
        if variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
105
            variance = self.clip(variance, min_value=1e-20)
106
        # for rl-diffuser https://arxiv.org/abs/2205.09991
107
        elif variance_type == "fixed_small_log":
108
            variance = self.log(self.clip(variance, min_value=1e-20))
109
        elif variance_type == "fixed_large":
110
            variance = self.betas[t]
111
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
112
            # Glide max_log
113
            variance = self.log(self.betas[t])
Patrick von Platen's avatar
Patrick von Platen committed
114
115
116

        return variance

117
118
119
120
121
122
123
124
    def step(
        self,
        residual: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        predict_epsilon=True,
    ):
        t = timestep
Patrick von Platen's avatar
Patrick von Platen committed
125
        # 1. compute alphas, betas
126
127
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

131
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
132
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
133
134
135
136
        if predict_epsilon:
            pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
        else:
            pred_original_sample = residual
Patrick von Platen's avatar
Patrick von Platen committed
137
138

        # 3. Clip "predicted x_0"
139
        if self.config.clip_sample:
140
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
141

142
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
143
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
144
145
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
146

147
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
148
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
149
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
150

151
        return {"prev_sample": pred_prev_sample}
Patrick von Platen's avatar
Patrick von Platen committed
152

153
    def add_noise(self, original_samples, noise, timesteps):
anton-l's avatar
anton-l committed
154
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
155
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
anton-l's avatar
anton-l committed
156
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
157
158
159
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
160
        return noisy_samples
anton-l's avatar
anton-l committed
161

Patrick von Platen's avatar
improve  
Patrick von Platen committed
162
    def __len__(self):
163
        return self.config.timesteps