test_4bit.py 34.8 KB
Newer Older
1
# coding=utf-8
Aryan's avatar
Aryan committed
2
# Copyright 2025 The HuggingFace Team Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
16
import os
17
18
19
20
import tempfile
import unittest

import numpy as np
21
import pytest
22
import safetensors.torch
23
from huggingface_hub import hf_hub_download
hlky's avatar
hlky committed
24
25
26
27
28
29
30
31
32
from PIL import Image

from diffusers import (
    BitsAndBytesConfig,
    DiffusionPipeline,
    FluxControlPipeline,
    FluxTransformer2DModel,
    SD3Transformer2DModel,
)
33
from diffusers.quantizers import PipelineQuantizationConfig
34
from diffusers.utils import is_accelerate_version, logging
35
36
from diffusers.utils.testing_utils import (
    CaptureLogger,
37
    backend_empty_cache,
38
39
40
41
42
43
44
    is_bitsandbytes_available,
    is_torch_available,
    is_transformers_available,
    load_pt,
    numpy_cosine_similarity_distance,
    require_accelerate,
    require_bitsandbytes_version_greater,
45
    require_peft_backend,
46
    require_torch,
47
    require_torch_accelerator,
48
    require_torch_version_greater,
49
50
51
52
53
    require_transformers_version_greater,
    slow,
    torch_device,
)

54
55
from ..test_torch_compile_utils import QuantCompileTests

56
57
58
59
60
61
62
63
64

def get_some_linear_layer(model):
    if model.__class__.__name__ in ["SD3Transformer2DModel", "FluxTransformer2DModel"]:
        return model.transformer_blocks[0].attn.to_q
    else:
        return NotImplementedError("Don't know what layer to retrieve here.")


if is_transformers_available():
65
    from transformers import BitsAndBytesConfig as BnbConfig
66
67
68
69
70
    from transformers import T5EncoderModel

if is_torch_available():
    import torch

71
    from ..utils import LoRALayer, get_memory_consumption_stat
72
73
74
75
76


if is_bitsandbytes_available():
    import bitsandbytes as bnb

77
78
    from diffusers.quantizers.bitsandbytes.utils import replace_with_bnb_linear

79
80
81
82

@require_bitsandbytes_version_greater("0.43.2")
@require_accelerate
@require_torch
83
@require_torch_accelerator
84
85
86
87
88
89
90
91
92
@slow
class Base4bitTests(unittest.TestCase):
    # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
    # Therefore here we use only SD3 to test our module
    model_name = "stabilityai/stable-diffusion-3-medium-diffusers"

    # This was obtained on audace so the number might slightly change
    expected_rel_difference = 3.69

93
94
    expected_memory_saving_ratio = 0.8

95
96
97
98
    prompt = "a beautiful sunset amidst the mountains."
    num_inference_steps = 10
    seed = 0

99
100
    @classmethod
    def setUpClass(cls):
101
102
103
104
105
106
107
108
        cls.is_deterministic_enabled = torch.are_deterministic_algorithms_enabled()
        if not cls.is_deterministic_enabled:
            torch.use_deterministic_algorithms(True)

    @classmethod
    def tearDownClass(cls):
        if not cls.is_deterministic_enabled:
            torch.use_deterministic_algorithms(False)
109

110
111
    def get_dummy_inputs(self):
        prompt_embeds = load_pt(
112
113
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/prompt_embeds.pt",
            torch_device,
114
115
        )
        pooled_prompt_embeds = load_pt(
116
117
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/pooled_prompt_embeds.pt",
            torch_device,
118
119
        )
        latent_model_input = load_pt(
120
121
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/latent_model_input.pt",
            torch_device,
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        )

        input_dict_for_transformer = {
            "hidden_states": latent_model_input,
            "encoder_hidden_states": prompt_embeds,
            "pooled_projections": pooled_prompt_embeds,
            "timestep": torch.Tensor([1.0]),
            "return_dict": False,
        }
        return input_dict_for_transformer


class BnB4BitBasicTests(Base4bitTests):
    def setUp(self):
136
        gc.collect()
137
        backend_empty_cache(torch_device)
138

139
140
141
142
143
144
145
146
147
148
        # Models
        self.model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        )
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        self.model_4bit = SD3Transformer2DModel.from_pretrained(
149
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
150
151
152
        )

    def tearDown(self):
153
154
155
156
        if hasattr(self, "model_fp16"):
            del self.model_fp16
        if hasattr(self, "model_4bit"):
            del self.model_4bit
157
158

        gc.collect()
159
        backend_empty_cache(torch_device)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    def test_quantization_num_parameters(self):
        r"""
        Test if the number of returned parameters is correct
        """
        num_params_4bit = self.model_4bit.num_parameters()
        num_params_fp16 = self.model_fp16.num_parameters()

        self.assertEqual(num_params_4bit, num_params_fp16)

    def test_quantization_config_json_serialization(self):
        r"""
        A simple test to check if the quantization config is correctly serialized and deserialized
        """
        config = self.model_4bit.config

        self.assertTrue("quantization_config" in config)

        _ = config["quantization_config"].to_dict()
        _ = config["quantization_config"].to_diff_dict()

        _ = config["quantization_config"].to_json_string()

    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        mem_fp16 = self.model_fp16.get_memory_footprint()
        mem_4bit = self.model_4bit.get_memory_footprint()

        self.assertAlmostEqual(mem_fp16 / mem_4bit, self.expected_rel_difference, delta=1e-2)
        linear = get_some_linear_layer(self.model_4bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_model_memory_usage(self):
        # Delete to not let anything interfere.
        del self.model_4bit, self.model_fp16

        # Re-instantiate.
        inputs = self.get_dummy_inputs()
        inputs = {
            k: v.to(device=torch_device, dtype=torch.float16) for k, v in inputs.items() if not isinstance(v, bool)
        }
        model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        ).to(torch_device)
        unquantized_model_memory = get_memory_consumption_stat(model_fp16, inputs)
        del model_fp16

        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", quantization_config=nf4_config, torch_dtype=torch.float16
        )
        quantized_model_memory = get_memory_consumption_stat(model_4bit, inputs)
        assert unquantized_model_memory / quantized_model_memory >= self.expected_memory_saving_ratio

221
222
    def test_original_dtype(self):
        r"""
223
        A simple test to check if the model successfully stores the original dtype
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        """
        self.assertTrue("_pre_quantization_dtype" in self.model_4bit.config)
        self.assertFalse("_pre_quantization_dtype" in self.model_fp16.config)
        self.assertTrue(self.model_4bit.config["_pre_quantization_dtype"] == torch.float16)

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules
        SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model = SD3Transformer2DModel.from_pretrained(
243
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
244
245
246
247
248
249
250
251
252
253
254
        )

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    self.assertTrue(module.weight.dtype == torch.float32)
                else:
                    # 4-bit parameters are packed in uint8 variables
                    self.assertTrue(module.weight.dtype == torch.uint8)

        # test if inference works.
255
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch.float16):
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            input_dict_for_transformer = self.get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

    def test_linear_are_4bit(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        self.model_fp16.get_memory_footprint()
        self.model_4bit.get_memory_footprint()

        for name, module in self.model_4bit.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name not in ["proj_out"]:
                    # 4-bit parameters are packed in uint8 variables
                    self.assertTrue(module.weight.dtype == torch.uint8)

    def test_config_from_pretrained(self):
        transformer_4bit = FluxTransformer2DModel.from_pretrained(
281
            "hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="transformer"
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        )
        linear = get_some_linear_layer(transformer_4bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)
        self.assertTrue(hasattr(linear.weight, "quant_state"))
        self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState)

    def test_device_assignment(self):
        mem_before = self.model_4bit.get_memory_footprint()

        # Move to CPU
        self.model_4bit.to("cpu")
        self.assertEqual(self.model_4bit.device.type, "cpu")
        self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before)

        # Move back to CUDA device
297
        for device in [0, f"{torch_device}", f"{torch_device}:0", "call()"]:
298
            if device == "call()":
299
                self.model_4bit.to(f"{torch_device}:0")
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
            else:
                self.model_4bit.to(device)
            self.assertEqual(self.model_4bit.device, torch.device(0))
            self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before)
            self.model_4bit.to("cpu")

    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after converting it in 4-bit will throw an error.
        Checks also if other models are casted correctly. Device placement, however, is supported.
        """
        with self.assertRaises(ValueError):
            # Tries with a `dtype`
            self.model_4bit.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device` and `dtype`
317
            self.model_4bit.to(device=f"{torch_device}:0", dtype=torch.float16)
318
319
320
321
322
323
324
325
326
327

        with self.assertRaises(ValueError):
            # Tries with a cast
            self.model_4bit.float()

        with self.assertRaises(ValueError):
            # Tries with a cast
            self.model_4bit.half()

        # This should work
328
        self.model_4bit.to(torch_device)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

        # Test if we did not break anything
        self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device)
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(dtype=torch.float32, device=torch_device)
            for k, v in input_dict_for_transformer.items()
            if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
        with torch.no_grad():
            _ = self.model_fp16(**model_inputs)

        # Check this does not throw an error
        _ = self.model_fp16.to("cpu")

        # Check this does not throw an error
        _ = self.model_fp16.half()

        # Check this does not throw an error
        _ = self.model_fp16.float()

        # Check that this does not throw an error
352
        _ = self.model_fp16.to(torch_device)
353
354
355
356
357
358
359
360

    def test_bnb_4bit_wrong_config(self):
        r"""
        Test whether creating a bnb config with unsupported values leads to errors.
        """
        with self.assertRaises(ValueError):
            _ = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_storage="add")

361
362
363
364
365
366
367
    def test_bnb_4bit_errors_loading_incorrect_state_dict(self):
        r"""
        Test if loading with an incorrect state dict raises an error.
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            nf4_config = BitsAndBytesConfig(load_in_4bit=True)
            model_4bit = SD3Transformer2DModel.from_pretrained(
368
                self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            )
            model_4bit.save_pretrained(tmpdirname)
            del model_4bit

            with self.assertRaises(ValueError) as err_context:
                state_dict = safetensors.torch.load_file(
                    os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")
                )

                # corrupt the state dict
                key_to_target = "context_embedder.weight"  # can be other keys too.
                compatible_param = state_dict[key_to_target]
                corrupted_param = torch.randn(compatible_param.shape[0] - 1, 1)
                state_dict[key_to_target] = bnb.nn.Params4bit(corrupted_param, requires_grad=False)
                safetensors.torch.save_file(
                    state_dict, os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")
                )

                _ = SD3Transformer2DModel.from_pretrained(tmpdirname)

            assert key_to_target in str(err_context.exception)

391
392
393
394
395
396
397
398
399
400
401
402
    def test_bnb_4bit_logs_warning_for_no_quantization(self):
        model_with_no_linear = torch.nn.Sequential(torch.nn.Conv2d(4, 4, 3), torch.nn.ReLU())
        quantization_config = BitsAndBytesConfig(load_in_4bit=True)
        logger = logging.get_logger("diffusers.quantizers.bitsandbytes.utils")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            _ = replace_with_bnb_linear(model_with_no_linear, quantization_config=quantization_config)
        assert (
            "You are loading your model in 8bit or 4bit but no linear modules were found in your model."
            in cap_logger.out
        )

403
404
405

class BnB4BitTrainingTests(Base4bitTests):
    def setUp(self):
406
        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
407
        backend_empty_cache(torch_device)
408

409
410
411
412
413
414
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        self.model_4bit = SD3Transformer2DModel.from_pretrained(
415
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
        )

    def test_training(self):
        # Step 1: freeze all parameters
        for param in self.model_4bit.parameters():
            param.requires_grad = False  # freeze the model - train adapters later
            if param.ndim == 1:
                # cast the small parameters (e.g. layernorm) to fp32 for stability
                param.data = param.data.to(torch.float32)

        # Step 2: add adapters
        for _, module in self.model_4bit.named_modules():
            if "Attention" in repr(type(module)):
                module.to_k = LoRALayer(module.to_k, rank=4)
                module.to_q = LoRALayer(module.to_q, rank=4)
                module.to_v = LoRALayer(module.to_v, rank=4)

        # Step 3: dummy batch
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})

        # Step 4: Check if the gradient is not None
441
        with torch.amp.autocast(torch_device, dtype=torch.float16):
442
443
444
445
446
447
448
449
450
451
452
453
            out = self.model_4bit(**model_inputs)[0]
            out.norm().backward()

        for module in self.model_4bit.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)


@require_transformers_version_greater("4.44.0")
class SlowBnb4BitTests(Base4bitTests):
    def setUp(self) -> None:
454
        gc.collect()
455
        backend_empty_cache(torch_device)
456

457
458
459
460
461
462
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
463
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
464
465
466
467
468
469
470
471
472
473
        )
        self.pipeline_4bit = DiffusionPipeline.from_pretrained(
            self.model_name, transformer=model_4bit, torch_dtype=torch.float16
        )
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
474
        backend_empty_cache(torch_device)
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

    def test_quality(self):
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1123, 0.1296, 0.1609, 0.1042, 0.1230, 0.1274, 0.0928, 0.1165, 0.1216])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-2)

    def test_generate_quality_dequantize(self):
        r"""
        Test that loading the model and unquantize it produce correct results.
        """
        self.pipeline_4bit.transformer.dequantize()
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1216, 0.1387, 0.1584, 0.1152, 0.1318, 0.1282, 0.1062, 0.1226, 0.1228])
        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

        # Since we offloaded the `pipeline_4bit.transformer` to CPU (result of `enable_model_cpu_offload()), check
        # the following.
        self.assertTrue(self.pipeline_4bit.transformer.device.type == "cpu")
        # calling it again shouldn't be a problem
        _ = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=2,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

    def test_moving_to_cpu_throws_warning(self):
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
525
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
526
527
528
529
530
531
532
533
534
535
536
537
538
        )

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            # Because `model.dtype` will return torch.float16 as SD3 transformer has
            # a conv layer as the first layer.
            _ = DiffusionPipeline.from_pretrained(
                self.model_name, transformer=model_4bit, torch_dtype=torch.float16
            ).to("cpu")

        assert "Pipelines loaded with `dtype=torch.float16`" in cap_logger.out

539
540
541
542
543
    @pytest.mark.xfail(
        condition=is_accelerate_version("<=", "1.1.1"),
        reason="Test will pass after https://github.com/huggingface/accelerate/pull/3223 is in a release.",
        strict=True,
    )
544
    def test_pipeline_cuda_placement_works_with_nf4(self):
545
546
547
548
549
550
551
552
553
554
        transformer_nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        transformer_4bit = SD3Transformer2DModel.from_pretrained(
            self.model_name,
            subfolder="transformer",
            quantization_config=transformer_nf4_config,
            torch_dtype=torch.float16,
555
            device_map=torch_device,
556
557
558
559
560
561
562
563
564
565
566
        )
        text_encoder_3_nf4_config = BnbConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        text_encoder_3_4bit = T5EncoderModel.from_pretrained(
            self.model_name,
            subfolder="text_encoder_3",
            quantization_config=text_encoder_3_nf4_config,
            torch_dtype=torch.float16,
567
            device_map=torch_device,
568
569
570
571
572
573
574
        )
        # CUDA device placement works.
        pipeline_4bit = DiffusionPipeline.from_pretrained(
            self.model_name,
            transformer=transformer_4bit,
            text_encoder_3=text_encoder_3_4bit,
            torch_dtype=torch.float16,
575
        ).to(torch_device)
576
577

        # Check if inference works.
578
        _ = pipeline_4bit(self.prompt, max_sequence_length=20, num_inference_steps=2)
579
580
581

        del pipeline_4bit

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    def test_device_map(self):
        """
        Test if the quantized model is working properly with "auto".
        cpu/disk offloading as well doesn't work with bnb.
        """

        def get_dummy_tensor_inputs(device=None, seed: int = 0):
            batch_size = 1
            num_latent_channels = 4
            num_image_channels = 3
            height = width = 4
            sequence_length = 48
            embedding_dim = 32

            torch.manual_seed(seed)
            hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(
                device, dtype=torch.bfloat16
            )
            torch.manual_seed(seed)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
                device, dtype=torch.bfloat16
            )

            torch.manual_seed(seed)
            pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)

            timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "txt_ids": text_ids,
                "img_ids": image_ids,
                "timestep": timestep,
            }

        inputs = get_dummy_tensor_inputs(torch_device)
        expected_slice = np.array(
            [0.47070312, 0.00390625, -0.03662109, -0.19628906, -0.53125, 0.5234375, -0.17089844, -0.59375, 0.578125]
        )

        # non sharded
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16
        )
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Params4bit))

        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

        # sharded

        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16
        )
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-sharded",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Params4bit))

        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()

        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

670
671
672
673

@require_transformers_version_greater("4.44.0")
class SlowBnb4BitFluxTests(Base4bitTests):
    def setUp(self) -> None:
674
        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
675
        backend_empty_cache(torch_device)
676
677

        model_id = "hf-internal-testing/flux.1-dev-nf4-pkg"
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        t5_4bit = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2")
        transformer_4bit = FluxTransformer2DModel.from_pretrained(model_id, subfolder="transformer")
        self.pipeline_4bit = DiffusionPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            text_encoder_2=t5_4bit,
            transformer=transformer_4bit,
            torch_dtype=torch.float16,
        )
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
692
        backend_empty_cache(torch_device)
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

    def test_quality(self):
        # keep the resolution and max tokens to a lower number for faster execution.
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.0583, 0.0586, 0.0632, 0.0815, 0.0813, 0.0947, 0.1040, 0.1145, 0.1265])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

712
    @require_peft_backend
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    def test_lora_loading(self):
        self.pipeline_4bit.load_lora_weights(
            hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
        )
        self.pipeline_4bit.set_adapters("hyper-sd", adapter_weights=0.125)

        output = self.pipeline_4bit(
            prompt=self.prompt,
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
            num_inference_steps=8,
            generator=torch.Generator().manual_seed(42),
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.5347, 0.5342, 0.5283, 0.5093, 0.4988, 0.5093, 0.5044, 0.5015, 0.4946])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

734

hlky's avatar
hlky committed
735
736
737
738
739
@require_transformers_version_greater("4.44.0")
@require_peft_backend
class SlowBnb4BitFluxControlWithLoraTests(Base4bitTests):
    def setUp(self) -> None:
        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
740
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
741
742
743
744
745
746
747
748

        self.pipeline_4bit = FluxControlPipeline.from_pretrained("eramth/flux-4bit", torch_dtype=torch.float16)
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
749
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

    def test_lora_loading(self):
        self.pipeline_4bit.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

        output = self.pipeline_4bit(
            prompt=self.prompt,
            control_image=Image.new(mode="RGB", size=(256, 256)),
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
            num_inference_steps=8,
            generator=torch.Generator().manual_seed(42),
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1636, 0.1675, 0.1982, 0.1743, 0.1809, 0.1936, 0.1743, 0.2095, 0.2139])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3, msg=f"{out_slice=} != {expected_slice=}")


771
772
773
774
@slow
class BaseBnb4BitSerializationTests(Base4bitTests):
    def tearDown(self):
        gc.collect()
775
        backend_empty_cache(torch_device)
776
777
778
779
780
781
782
783
784
785
786
787
788
789

    def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True):
        r"""
        Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default.
        See ExtendedSerializationTest class for more params combinations.
        """

        self.quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type=quant_type,
            bnb_4bit_use_double_quant=double_quant,
            bnb_4bit_compute_dtype=torch.bfloat16,
        )
        model_0 = SD3Transformer2DModel.from_pretrained(
790
791
792
793
            self.model_name,
            subfolder="transformer",
            quantization_config=self.quantization_config,
            device_map=torch_device,
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
        )
        self.assertTrue("_pre_quantization_dtype" in model_0.config)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization)

            config = SD3Transformer2DModel.load_config(tmpdirname)
            self.assertTrue("quantization_config" in config)
            self.assertTrue("_pre_quantization_dtype" not in config)

            model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname)

        # checking quantized linear module weight
        linear = get_some_linear_layer(model_1)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)
        self.assertTrue(hasattr(linear.weight, "quant_state"))
        self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState)

        # checking memory footpring
        self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2)

        # Matching all parameters and their quant_state items:
        d0 = dict(model_0.named_parameters())
        d1 = dict(model_1.named_parameters())
        self.assertTrue(d0.keys() == d1.keys())

        for k in d0.keys():
            self.assertTrue(d0[k].shape == d1[k].shape)
            self.assertTrue(d0[k].device.type == d1[k].device.type)
            self.assertTrue(d0[k].device == d1[k].device)
            self.assertTrue(d0[k].dtype == d1[k].dtype)
            self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device)))

            if isinstance(d0[k], bnb.nn.modules.Params4bit):
                for v0, v1 in zip(
                    d0[k].quant_state.as_dict().values(),
                    d1[k].quant_state.as_dict().values(),
                ):
                    if isinstance(v0, torch.Tensor):
                        self.assertTrue(torch.equal(v0, v1.to(v0.device)))
                    else:
                        self.assertTrue(v0 == v1)

        # comparing forward() outputs
        dummy_inputs = self.get_dummy_inputs()
        inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)}
        inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs})
        out_0 = model_0(**inputs)[0]
        out_1 = model_1(**inputs)[0]
        self.assertTrue(torch.equal(out_0, out_1))


class ExtendedSerializationTest(BaseBnb4BitSerializationTests):
    """
    tests more combinations of parameters
    """

    def test_nf4_single_unsafe(self):
        self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False)

    def test_nf4_single_safe(self):
        self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True)

    def test_nf4_double_unsafe(self):
        self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False)

    # nf4 double safetensors quantization is tested in test_serialization() method from the parent class

    def test_fp4_single_unsafe(self):
        self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False)

    def test_fp4_single_safe(self):
        self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True)

    def test_fp4_double_unsafe(self):
        self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False)

    def test_fp4_double_safe(self):
        self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True)
872
873
874
875


@require_torch_version_greater("2.7.1")
class Bnb4BitCompileTests(QuantCompileTests):
876
877
878
879
880
881
882
883
884
885
886
    @property
    def quantization_config(self):
        return PipelineQuantizationConfig(
            quant_backend="bitsandbytes_8bit",
            quant_kwargs={
                "load_in_4bit": True,
                "bnb_4bit_quant_type": "nf4",
                "bnb_4bit_compute_dtype": torch.bfloat16,
            },
            components_to_quantize=["transformer", "text_encoder_2"],
        )
887
888
889
890
891
892
893
894

    def test_torch_compile(self):
        torch._dynamo.config.capture_dynamic_output_shape_ops = True
        super()._test_torch_compile(quantization_config=self.quantization_config)

    def test_torch_compile_with_cpu_offload(self):
        super()._test_torch_compile_with_cpu_offload(quantization_config=self.quantization_config)

895
896
897
898
    def test_torch_compile_with_group_offload_leaf(self):
        super()._test_torch_compile_with_group_offload_leaf(
            quantization_config=self.quantization_config, use_stream=True
        )