test_4bit.py 34.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2024 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
16
import os
17
18
19
20
import tempfile
import unittest

import numpy as np
21
import pytest
22
import safetensors.torch
23
from huggingface_hub import hf_hub_download
hlky's avatar
hlky committed
24
25
26
27
28
29
30
31
32
from PIL import Image

from diffusers import (
    BitsAndBytesConfig,
    DiffusionPipeline,
    FluxControlPipeline,
    FluxTransformer2DModel,
    SD3Transformer2DModel,
)
33
from diffusers.quantizers import PipelineQuantizationConfig
34
from diffusers.utils import is_accelerate_version, logging
35
36
from diffusers.utils.testing_utils import (
    CaptureLogger,
37
    backend_empty_cache,
38
39
40
41
42
43
44
    is_bitsandbytes_available,
    is_torch_available,
    is_transformers_available,
    load_pt,
    numpy_cosine_similarity_distance,
    require_accelerate,
    require_bitsandbytes_version_greater,
45
    require_peft_backend,
46
    require_torch,
47
    require_torch_accelerator,
48
    require_torch_version_greater,
49
50
51
52
53
    require_transformers_version_greater,
    slow,
    torch_device,
)

54
55
from ..test_torch_compile_utils import QuantCompileTests

56
57
58
59
60
61
62
63
64

def get_some_linear_layer(model):
    if model.__class__.__name__ in ["SD3Transformer2DModel", "FluxTransformer2DModel"]:
        return model.transformer_blocks[0].attn.to_q
    else:
        return NotImplementedError("Don't know what layer to retrieve here.")


if is_transformers_available():
65
    from transformers import BitsAndBytesConfig as BnbConfig
66
67
68
69
70
    from transformers import T5EncoderModel

if is_torch_available():
    import torch

71
    from ..utils import LoRALayer, get_memory_consumption_stat
72
73
74
75
76


if is_bitsandbytes_available():
    import bitsandbytes as bnb

77
78
    from diffusers.quantizers.bitsandbytes.utils import replace_with_bnb_linear

79
80
81
82

@require_bitsandbytes_version_greater("0.43.2")
@require_accelerate
@require_torch
83
@require_torch_accelerator
84
85
86
87
88
89
90
91
92
@slow
class Base4bitTests(unittest.TestCase):
    # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
    # Therefore here we use only SD3 to test our module
    model_name = "stabilityai/stable-diffusion-3-medium-diffusers"

    # This was obtained on audace so the number might slightly change
    expected_rel_difference = 3.69

93
94
    expected_memory_saving_ratio = 0.8

95
96
97
98
99
100
    prompt = "a beautiful sunset amidst the mountains."
    num_inference_steps = 10
    seed = 0

    def get_dummy_inputs(self):
        prompt_embeds = load_pt(
101
102
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/prompt_embeds.pt",
            torch_device,
103
104
        )
        pooled_prompt_embeds = load_pt(
105
106
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/pooled_prompt_embeds.pt",
            torch_device,
107
108
        )
        latent_model_input = load_pt(
109
110
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/latent_model_input.pt",
            torch_device,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        )

        input_dict_for_transformer = {
            "hidden_states": latent_model_input,
            "encoder_hidden_states": prompt_embeds,
            "pooled_projections": pooled_prompt_embeds,
            "timestep": torch.Tensor([1.0]),
            "return_dict": False,
        }
        return input_dict_for_transformer


class BnB4BitBasicTests(Base4bitTests):
    def setUp(self):
125
        gc.collect()
126
        backend_empty_cache(torch_device)
127

128
129
130
131
132
133
134
135
136
137
        # Models
        self.model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        )
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        self.model_4bit = SD3Transformer2DModel.from_pretrained(
138
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
139
140
141
        )

    def tearDown(self):
142
143
144
145
        if hasattr(self, "model_fp16"):
            del self.model_fp16
        if hasattr(self, "model_4bit"):
            del self.model_4bit
146
147

        gc.collect()
148
        backend_empty_cache(torch_device)
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    def test_quantization_num_parameters(self):
        r"""
        Test if the number of returned parameters is correct
        """
        num_params_4bit = self.model_4bit.num_parameters()
        num_params_fp16 = self.model_fp16.num_parameters()

        self.assertEqual(num_params_4bit, num_params_fp16)

    def test_quantization_config_json_serialization(self):
        r"""
        A simple test to check if the quantization config is correctly serialized and deserialized
        """
        config = self.model_4bit.config

        self.assertTrue("quantization_config" in config)

        _ = config["quantization_config"].to_dict()
        _ = config["quantization_config"].to_diff_dict()

        _ = config["quantization_config"].to_json_string()

    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        mem_fp16 = self.model_fp16.get_memory_footprint()
        mem_4bit = self.model_4bit.get_memory_footprint()

        self.assertAlmostEqual(mem_fp16 / mem_4bit, self.expected_rel_difference, delta=1e-2)
        linear = get_some_linear_layer(self.model_4bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def test_model_memory_usage(self):
        # Delete to not let anything interfere.
        del self.model_4bit, self.model_fp16

        # Re-instantiate.
        inputs = self.get_dummy_inputs()
        inputs = {
            k: v.to(device=torch_device, dtype=torch.float16) for k, v in inputs.items() if not isinstance(v, bool)
        }
        model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        ).to(torch_device)
        unquantized_model_memory = get_memory_consumption_stat(model_fp16, inputs)
        del model_fp16

        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", quantization_config=nf4_config, torch_dtype=torch.float16
        )
        quantized_model_memory = get_memory_consumption_stat(model_4bit, inputs)
        assert unquantized_model_memory / quantized_model_memory >= self.expected_memory_saving_ratio

210
211
    def test_original_dtype(self):
        r"""
212
        A simple test to check if the model successfully stores the original dtype
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        """
        self.assertTrue("_pre_quantization_dtype" in self.model_4bit.config)
        self.assertFalse("_pre_quantization_dtype" in self.model_fp16.config)
        self.assertTrue(self.model_4bit.config["_pre_quantization_dtype"] == torch.float16)

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules
        SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model = SD3Transformer2DModel.from_pretrained(
232
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
233
234
235
236
237
238
239
240
241
242
243
        )

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    self.assertTrue(module.weight.dtype == torch.float32)
                else:
                    # 4-bit parameters are packed in uint8 variables
                    self.assertTrue(module.weight.dtype == torch.uint8)

        # test if inference works.
244
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch.float16):
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            input_dict_for_transformer = self.get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

    def test_linear_are_4bit(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        self.model_fp16.get_memory_footprint()
        self.model_4bit.get_memory_footprint()

        for name, module in self.model_4bit.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name not in ["proj_out"]:
                    # 4-bit parameters are packed in uint8 variables
                    self.assertTrue(module.weight.dtype == torch.uint8)

    def test_config_from_pretrained(self):
        transformer_4bit = FluxTransformer2DModel.from_pretrained(
270
            "hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="transformer"
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        )
        linear = get_some_linear_layer(transformer_4bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)
        self.assertTrue(hasattr(linear.weight, "quant_state"))
        self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState)

    def test_device_assignment(self):
        mem_before = self.model_4bit.get_memory_footprint()

        # Move to CPU
        self.model_4bit.to("cpu")
        self.assertEqual(self.model_4bit.device.type, "cpu")
        self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before)

        # Move back to CUDA device
286
        for device in [0, f"{torch_device}", f"{torch_device}:0", "call()"]:
287
            if device == "call()":
288
                self.model_4bit.to(f"{torch_device}:0")
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
            else:
                self.model_4bit.to(device)
            self.assertEqual(self.model_4bit.device, torch.device(0))
            self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before)
            self.model_4bit.to("cpu")

    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after converting it in 4-bit will throw an error.
        Checks also if other models are casted correctly. Device placement, however, is supported.
        """
        with self.assertRaises(ValueError):
            # Tries with a `dtype`
            self.model_4bit.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device` and `dtype`
306
            self.model_4bit.to(device=f"{torch_device}:0", dtype=torch.float16)
307
308
309
310
311
312
313
314
315
316

        with self.assertRaises(ValueError):
            # Tries with a cast
            self.model_4bit.float()

        with self.assertRaises(ValueError):
            # Tries with a cast
            self.model_4bit.half()

        # This should work
317
        self.model_4bit.to(torch_device)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

        # Test if we did not break anything
        self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device)
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(dtype=torch.float32, device=torch_device)
            for k, v in input_dict_for_transformer.items()
            if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
        with torch.no_grad():
            _ = self.model_fp16(**model_inputs)

        # Check this does not throw an error
        _ = self.model_fp16.to("cpu")

        # Check this does not throw an error
        _ = self.model_fp16.half()

        # Check this does not throw an error
        _ = self.model_fp16.float()

        # Check that this does not throw an error
341
        _ = self.model_fp16.to(torch_device)
342
343
344
345
346
347
348
349

    def test_bnb_4bit_wrong_config(self):
        r"""
        Test whether creating a bnb config with unsupported values leads to errors.
        """
        with self.assertRaises(ValueError):
            _ = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_storage="add")

350
351
352
353
354
355
356
    def test_bnb_4bit_errors_loading_incorrect_state_dict(self):
        r"""
        Test if loading with an incorrect state dict raises an error.
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            nf4_config = BitsAndBytesConfig(load_in_4bit=True)
            model_4bit = SD3Transformer2DModel.from_pretrained(
357
                self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
            )
            model_4bit.save_pretrained(tmpdirname)
            del model_4bit

            with self.assertRaises(ValueError) as err_context:
                state_dict = safetensors.torch.load_file(
                    os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")
                )

                # corrupt the state dict
                key_to_target = "context_embedder.weight"  # can be other keys too.
                compatible_param = state_dict[key_to_target]
                corrupted_param = torch.randn(compatible_param.shape[0] - 1, 1)
                state_dict[key_to_target] = bnb.nn.Params4bit(corrupted_param, requires_grad=False)
                safetensors.torch.save_file(
                    state_dict, os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")
                )

                _ = SD3Transformer2DModel.from_pretrained(tmpdirname)

            assert key_to_target in str(err_context.exception)

380
381
382
383
384
385
386
387
388
389
390
391
    def test_bnb_4bit_logs_warning_for_no_quantization(self):
        model_with_no_linear = torch.nn.Sequential(torch.nn.Conv2d(4, 4, 3), torch.nn.ReLU())
        quantization_config = BitsAndBytesConfig(load_in_4bit=True)
        logger = logging.get_logger("diffusers.quantizers.bitsandbytes.utils")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            _ = replace_with_bnb_linear(model_with_no_linear, quantization_config=quantization_config)
        assert (
            "You are loading your model in 8bit or 4bit but no linear modules were found in your model."
            in cap_logger.out
        )

392
393
394

class BnB4BitTrainingTests(Base4bitTests):
    def setUp(self):
395
        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
396
        backend_empty_cache(torch_device)
397

398
399
400
401
402
403
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        self.model_4bit = SD3Transformer2DModel.from_pretrained(
404
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        )

    def test_training(self):
        # Step 1: freeze all parameters
        for param in self.model_4bit.parameters():
            param.requires_grad = False  # freeze the model - train adapters later
            if param.ndim == 1:
                # cast the small parameters (e.g. layernorm) to fp32 for stability
                param.data = param.data.to(torch.float32)

        # Step 2: add adapters
        for _, module in self.model_4bit.named_modules():
            if "Attention" in repr(type(module)):
                module.to_k = LoRALayer(module.to_k, rank=4)
                module.to_q = LoRALayer(module.to_q, rank=4)
                module.to_v = LoRALayer(module.to_v, rank=4)

        # Step 3: dummy batch
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})

        # Step 4: Check if the gradient is not None
430
        with torch.amp.autocast(torch_device, dtype=torch.float16):
431
432
433
434
435
436
437
438
439
440
441
442
            out = self.model_4bit(**model_inputs)[0]
            out.norm().backward()

        for module in self.model_4bit.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)


@require_transformers_version_greater("4.44.0")
class SlowBnb4BitTests(Base4bitTests):
    def setUp(self) -> None:
443
        gc.collect()
444
        backend_empty_cache(torch_device)
445

446
447
448
449
450
451
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
452
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
453
454
455
456
457
458
459
460
461
462
        )
        self.pipeline_4bit = DiffusionPipeline.from_pretrained(
            self.model_name, transformer=model_4bit, torch_dtype=torch.float16
        )
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
463
        backend_empty_cache(torch_device)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    def test_quality(self):
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1123, 0.1296, 0.1609, 0.1042, 0.1230, 0.1274, 0.0928, 0.1165, 0.1216])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-2)

    def test_generate_quality_dequantize(self):
        r"""
        Test that loading the model and unquantize it produce correct results.
        """
483
        torch.use_deterministic_algorithms(True)
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        self.pipeline_4bit.transformer.dequantize()
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1216, 0.1387, 0.1584, 0.1152, 0.1318, 0.1282, 0.1062, 0.1226, 0.1228])
        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

        # Since we offloaded the `pipeline_4bit.transformer` to CPU (result of `enable_model_cpu_offload()), check
        # the following.
        self.assertTrue(self.pipeline_4bit.transformer.device.type == "cpu")
        # calling it again shouldn't be a problem
        _ = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=2,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

    def test_moving_to_cpu_throws_warning(self):
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
515
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
516
517
518
519
520
521
522
523
524
525
526
527
528
        )

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            # Because `model.dtype` will return torch.float16 as SD3 transformer has
            # a conv layer as the first layer.
            _ = DiffusionPipeline.from_pretrained(
                self.model_name, transformer=model_4bit, torch_dtype=torch.float16
            ).to("cpu")

        assert "Pipelines loaded with `dtype=torch.float16`" in cap_logger.out

529
530
531
532
533
    @pytest.mark.xfail(
        condition=is_accelerate_version("<=", "1.1.1"),
        reason="Test will pass after https://github.com/huggingface/accelerate/pull/3223 is in a release.",
        strict=True,
    )
534
    def test_pipeline_cuda_placement_works_with_nf4(self):
535
536
537
538
539
540
541
542
543
544
        transformer_nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        transformer_4bit = SD3Transformer2DModel.from_pretrained(
            self.model_name,
            subfolder="transformer",
            quantization_config=transformer_nf4_config,
            torch_dtype=torch.float16,
545
            device_map=torch_device,
546
547
548
549
550
551
552
553
554
555
556
        )
        text_encoder_3_nf4_config = BnbConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        text_encoder_3_4bit = T5EncoderModel.from_pretrained(
            self.model_name,
            subfolder="text_encoder_3",
            quantization_config=text_encoder_3_nf4_config,
            torch_dtype=torch.float16,
557
            device_map=torch_device,
558
559
560
561
562
563
564
        )
        # CUDA device placement works.
        pipeline_4bit = DiffusionPipeline.from_pretrained(
            self.model_name,
            transformer=transformer_4bit,
            text_encoder_3=text_encoder_3_4bit,
            torch_dtype=torch.float16,
565
        ).to(torch_device)
566
567

        # Check if inference works.
568
        _ = pipeline_4bit(self.prompt, max_sequence_length=20, num_inference_steps=2)
569
570
571

        del pipeline_4bit

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    def test_device_map(self):
        """
        Test if the quantized model is working properly with "auto".
        cpu/disk offloading as well doesn't work with bnb.
        """

        def get_dummy_tensor_inputs(device=None, seed: int = 0):
            batch_size = 1
            num_latent_channels = 4
            num_image_channels = 3
            height = width = 4
            sequence_length = 48
            embedding_dim = 32

            torch.manual_seed(seed)
            hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(
                device, dtype=torch.bfloat16
            )
            torch.manual_seed(seed)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
                device, dtype=torch.bfloat16
            )

            torch.manual_seed(seed)
            pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)

            timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "txt_ids": text_ids,
                "img_ids": image_ids,
                "timestep": timestep,
            }

        inputs = get_dummy_tensor_inputs(torch_device)
        expected_slice = np.array(
            [0.47070312, 0.00390625, -0.03662109, -0.19628906, -0.53125, 0.5234375, -0.17089844, -0.59375, 0.578125]
        )

        # non sharded
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16
        )
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Params4bit))

        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

        # sharded

        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16
        )
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-sharded",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Params4bit))

        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()

        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

660
661
662
663

@require_transformers_version_greater("4.44.0")
class SlowBnb4BitFluxTests(Base4bitTests):
    def setUp(self) -> None:
664
        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
665
        backend_empty_cache(torch_device)
666
667

        model_id = "hf-internal-testing/flux.1-dev-nf4-pkg"
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        t5_4bit = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2")
        transformer_4bit = FluxTransformer2DModel.from_pretrained(model_id, subfolder="transformer")
        self.pipeline_4bit = DiffusionPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            text_encoder_2=t5_4bit,
            transformer=transformer_4bit,
            torch_dtype=torch.float16,
        )
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
682
        backend_empty_cache(torch_device)
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

    def test_quality(self):
        # keep the resolution and max tokens to a lower number for faster execution.
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.0583, 0.0586, 0.0632, 0.0815, 0.0813, 0.0947, 0.1040, 0.1145, 0.1265])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

702
    @require_peft_backend
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    def test_lora_loading(self):
        self.pipeline_4bit.load_lora_weights(
            hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
        )
        self.pipeline_4bit.set_adapters("hyper-sd", adapter_weights=0.125)

        output = self.pipeline_4bit(
            prompt=self.prompt,
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
            num_inference_steps=8,
            generator=torch.Generator().manual_seed(42),
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.5347, 0.5342, 0.5283, 0.5093, 0.4988, 0.5093, 0.5044, 0.5015, 0.4946])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

724

hlky's avatar
hlky committed
725
726
727
728
729
@require_transformers_version_greater("4.44.0")
@require_peft_backend
class SlowBnb4BitFluxControlWithLoraTests(Base4bitTests):
    def setUp(self) -> None:
        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
730
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
731
732
733
734
735
736
737
738

        self.pipeline_4bit = FluxControlPipeline.from_pretrained("eramth/flux-4bit", torch_dtype=torch.float16)
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
Yao Matrix's avatar
Yao Matrix committed
739
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

    def test_lora_loading(self):
        self.pipeline_4bit.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")

        output = self.pipeline_4bit(
            prompt=self.prompt,
            control_image=Image.new(mode="RGB", size=(256, 256)),
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
            num_inference_steps=8,
            generator=torch.Generator().manual_seed(42),
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1636, 0.1675, 0.1982, 0.1743, 0.1809, 0.1936, 0.1743, 0.2095, 0.2139])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3, msg=f"{out_slice=} != {expected_slice=}")


761
762
763
764
@slow
class BaseBnb4BitSerializationTests(Base4bitTests):
    def tearDown(self):
        gc.collect()
765
        backend_empty_cache(torch_device)
766
767
768
769
770
771
772
773
774
775
776
777
778
779

    def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True):
        r"""
        Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default.
        See ExtendedSerializationTest class for more params combinations.
        """

        self.quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type=quant_type,
            bnb_4bit_use_double_quant=double_quant,
            bnb_4bit_compute_dtype=torch.bfloat16,
        )
        model_0 = SD3Transformer2DModel.from_pretrained(
780
781
782
783
            self.model_name,
            subfolder="transformer",
            quantization_config=self.quantization_config,
            device_map=torch_device,
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
        )
        self.assertTrue("_pre_quantization_dtype" in model_0.config)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization)

            config = SD3Transformer2DModel.load_config(tmpdirname)
            self.assertTrue("quantization_config" in config)
            self.assertTrue("_pre_quantization_dtype" not in config)

            model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname)

        # checking quantized linear module weight
        linear = get_some_linear_layer(model_1)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)
        self.assertTrue(hasattr(linear.weight, "quant_state"))
        self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState)

        # checking memory footpring
        self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2)

        # Matching all parameters and their quant_state items:
        d0 = dict(model_0.named_parameters())
        d1 = dict(model_1.named_parameters())
        self.assertTrue(d0.keys() == d1.keys())

        for k in d0.keys():
            self.assertTrue(d0[k].shape == d1[k].shape)
            self.assertTrue(d0[k].device.type == d1[k].device.type)
            self.assertTrue(d0[k].device == d1[k].device)
            self.assertTrue(d0[k].dtype == d1[k].dtype)
            self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device)))

            if isinstance(d0[k], bnb.nn.modules.Params4bit):
                for v0, v1 in zip(
                    d0[k].quant_state.as_dict().values(),
                    d1[k].quant_state.as_dict().values(),
                ):
                    if isinstance(v0, torch.Tensor):
                        self.assertTrue(torch.equal(v0, v1.to(v0.device)))
                    else:
                        self.assertTrue(v0 == v1)

        # comparing forward() outputs
        dummy_inputs = self.get_dummy_inputs()
        inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)}
        inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs})
        out_0 = model_0(**inputs)[0]
        out_1 = model_1(**inputs)[0]
        self.assertTrue(torch.equal(out_0, out_1))


class ExtendedSerializationTest(BaseBnb4BitSerializationTests):
    """
    tests more combinations of parameters
    """

    def test_nf4_single_unsafe(self):
        self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False)

    def test_nf4_single_safe(self):
        self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True)

    def test_nf4_double_unsafe(self):
        self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False)

    # nf4 double safetensors quantization is tested in test_serialization() method from the parent class

    def test_fp4_single_unsafe(self):
        self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False)

    def test_fp4_single_safe(self):
        self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True)

    def test_fp4_double_unsafe(self):
        self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False)

    def test_fp4_double_safe(self):
        self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True)
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884


@require_torch_version_greater("2.7.1")
class Bnb4BitCompileTests(QuantCompileTests):
    quantization_config = PipelineQuantizationConfig(
        quant_backend="bitsandbytes_8bit",
        quant_kwargs={
            "load_in_4bit": True,
            "bnb_4bit_quant_type": "nf4",
            "bnb_4bit_compute_dtype": torch.bfloat16,
        },
        components_to_quantize=["transformer", "text_encoder_2"],
    )

    def test_torch_compile(self):
        torch._dynamo.config.capture_dynamic_output_shape_ops = True
        super()._test_torch_compile(quantization_config=self.quantization_config)

    def test_torch_compile_with_cpu_offload(self):
        super()._test_torch_compile_with_cpu_offload(quantization_config=self.quantization_config)

    def test_torch_compile_with_group_offload(self):
        super()._test_torch_compile_with_group_offload(quantization_config=self.quantization_config)