test_4bit.py 31.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2024 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
16
import os
17
18
19
20
import tempfile
import unittest

import numpy as np
21
import pytest
22
import safetensors.torch
23
from huggingface_hub import hf_hub_download
24
25

from diffusers import BitsAndBytesConfig, DiffusionPipeline, FluxTransformer2DModel, SD3Transformer2DModel
26
from diffusers.utils import is_accelerate_version, logging
27
28
from diffusers.utils.testing_utils import (
    CaptureLogger,
29
    backend_empty_cache,
30
31
32
33
34
35
36
    is_bitsandbytes_available,
    is_torch_available,
    is_transformers_available,
    load_pt,
    numpy_cosine_similarity_distance,
    require_accelerate,
    require_bitsandbytes_version_greater,
37
    require_peft_backend,
38
    require_torch,
39
    require_torch_accelerator,
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    require_transformers_version_greater,
    slow,
    torch_device,
)


def get_some_linear_layer(model):
    if model.__class__.__name__ in ["SD3Transformer2DModel", "FluxTransformer2DModel"]:
        return model.transformer_blocks[0].attn.to_q
    else:
        return NotImplementedError("Don't know what layer to retrieve here.")


if is_transformers_available():
54
    from transformers import BitsAndBytesConfig as BnbConfig
55
56
57
58
59
    from transformers import T5EncoderModel

if is_torch_available():
    import torch

60
    from ..utils import LoRALayer, get_memory_consumption_stat
61
62
63
64
65
66
67
68
69


if is_bitsandbytes_available():
    import bitsandbytes as bnb


@require_bitsandbytes_version_greater("0.43.2")
@require_accelerate
@require_torch
70
@require_torch_accelerator
71
72
73
74
75
76
77
78
79
@slow
class Base4bitTests(unittest.TestCase):
    # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
    # Therefore here we use only SD3 to test our module
    model_name = "stabilityai/stable-diffusion-3-medium-diffusers"

    # This was obtained on audace so the number might slightly change
    expected_rel_difference = 3.69

80
81
    expected_memory_saving_ratio = 0.8

82
83
84
85
86
87
    prompt = "a beautiful sunset amidst the mountains."
    num_inference_steps = 10
    seed = 0

    def get_dummy_inputs(self):
        prompt_embeds = load_pt(
88
89
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/prompt_embeds.pt",
            torch_device,
90
91
        )
        pooled_prompt_embeds = load_pt(
92
93
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/pooled_prompt_embeds.pt",
            torch_device,
94
95
        )
        latent_model_input = load_pt(
96
97
            "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/latent_model_input.pt",
            torch_device,
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        )

        input_dict_for_transformer = {
            "hidden_states": latent_model_input,
            "encoder_hidden_states": prompt_embeds,
            "pooled_projections": pooled_prompt_embeds,
            "timestep": torch.Tensor([1.0]),
            "return_dict": False,
        }
        return input_dict_for_transformer


class BnB4BitBasicTests(Base4bitTests):
    def setUp(self):
112
        gc.collect()
113
        backend_empty_cache(torch_device)
114

115
116
117
118
119
120
121
122
123
124
        # Models
        self.model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        )
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        self.model_4bit = SD3Transformer2DModel.from_pretrained(
125
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
126
127
128
        )

    def tearDown(self):
129
130
131
132
        if hasattr(self, "model_fp16"):
            del self.model_fp16
        if hasattr(self, "model_4bit"):
            del self.model_4bit
133
134

        gc.collect()
135
        backend_empty_cache(torch_device)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    def test_quantization_num_parameters(self):
        r"""
        Test if the number of returned parameters is correct
        """
        num_params_4bit = self.model_4bit.num_parameters()
        num_params_fp16 = self.model_fp16.num_parameters()

        self.assertEqual(num_params_4bit, num_params_fp16)

    def test_quantization_config_json_serialization(self):
        r"""
        A simple test to check if the quantization config is correctly serialized and deserialized
        """
        config = self.model_4bit.config

        self.assertTrue("quantization_config" in config)

        _ = config["quantization_config"].to_dict()
        _ = config["quantization_config"].to_diff_dict()

        _ = config["quantization_config"].to_json_string()

    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        mem_fp16 = self.model_fp16.get_memory_footprint()
        mem_4bit = self.model_4bit.get_memory_footprint()

        self.assertAlmostEqual(mem_fp16 / mem_4bit, self.expected_rel_difference, delta=1e-2)
        linear = get_some_linear_layer(self.model_4bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    def test_model_memory_usage(self):
        # Delete to not let anything interfere.
        del self.model_4bit, self.model_fp16

        # Re-instantiate.
        inputs = self.get_dummy_inputs()
        inputs = {
            k: v.to(device=torch_device, dtype=torch.float16) for k, v in inputs.items() if not isinstance(v, bool)
        }
        model_fp16 = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", torch_dtype=torch.float16
        ).to(torch_device)
        unquantized_model_memory = get_memory_consumption_stat(model_fp16, inputs)
        del model_fp16

        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
            self.model_name, subfolder="transformer", quantization_config=nf4_config, torch_dtype=torch.float16
        )
        quantized_model_memory = get_memory_consumption_stat(model_4bit, inputs)
        assert unquantized_model_memory / quantized_model_memory >= self.expected_memory_saving_ratio

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def test_original_dtype(self):
        r"""
        A simple test to check if the model succesfully stores the original dtype
        """
        self.assertTrue("_pre_quantization_dtype" in self.model_4bit.config)
        self.assertFalse("_pre_quantization_dtype" in self.model_fp16.config)
        self.assertTrue(self.model_4bit.config["_pre_quantization_dtype"] == torch.float16)

    def test_keep_modules_in_fp32(self):
        r"""
        A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32.
        Also ensures if inference works.
        """
        fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules
        SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"]

        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model = SD3Transformer2DModel.from_pretrained(
219
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
220
221
222
223
224
225
226
227
228
229
230
        )

        for name, module in model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name in model._keep_in_fp32_modules:
                    self.assertTrue(module.weight.dtype == torch.float32)
                else:
                    # 4-bit parameters are packed in uint8 variables
                    self.assertTrue(module.weight.dtype == torch.uint8)

        # test if inference works.
231
        with torch.no_grad() and torch.amp.autocast(torch_device, dtype=torch.float16):
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
            input_dict_for_transformer = self.get_dummy_inputs()
            model_inputs = {
                k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
            }
            model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
            _ = model(**model_inputs)

        SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules

    def test_linear_are_4bit(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        self.model_fp16.get_memory_footprint()
        self.model_4bit.get_memory_footprint()

        for name, module in self.model_4bit.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name not in ["proj_out"]:
                    # 4-bit parameters are packed in uint8 variables
                    self.assertTrue(module.weight.dtype == torch.uint8)

    def test_config_from_pretrained(self):
        transformer_4bit = FluxTransformer2DModel.from_pretrained(
257
            "hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="transformer"
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        )
        linear = get_some_linear_layer(transformer_4bit)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)
        self.assertTrue(hasattr(linear.weight, "quant_state"))
        self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState)

    def test_device_assignment(self):
        mem_before = self.model_4bit.get_memory_footprint()

        # Move to CPU
        self.model_4bit.to("cpu")
        self.assertEqual(self.model_4bit.device.type, "cpu")
        self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before)

        # Move back to CUDA device
273
        for device in [0, f"{torch_device}", f"{torch_device}:0", "call()"]:
274
            if device == "call()":
275
                self.model_4bit.to(f"{torch_device}:0")
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
            else:
                self.model_4bit.to(device)
            self.assertEqual(self.model_4bit.device, torch.device(0))
            self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before)
            self.model_4bit.to("cpu")

    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after converting it in 4-bit will throw an error.
        Checks also if other models are casted correctly. Device placement, however, is supported.
        """
        with self.assertRaises(ValueError):
            # Tries with a `dtype`
            self.model_4bit.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device` and `dtype`
293
            self.model_4bit.to(device=f"{torch_device}:0", dtype=torch.float16)
294
295
296
297
298
299
300
301
302
303

        with self.assertRaises(ValueError):
            # Tries with a cast
            self.model_4bit.float()

        with self.assertRaises(ValueError):
            # Tries with a cast
            self.model_4bit.half()

        # This should work
304
        self.model_4bit.to(torch_device)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

        # Test if we did not break anything
        self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device)
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(dtype=torch.float32, device=torch_device)
            for k, v in input_dict_for_transformer.items()
            if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})
        with torch.no_grad():
            _ = self.model_fp16(**model_inputs)

        # Check this does not throw an error
        _ = self.model_fp16.to("cpu")

        # Check this does not throw an error
        _ = self.model_fp16.half()

        # Check this does not throw an error
        _ = self.model_fp16.float()

        # Check that this does not throw an error
328
        _ = self.model_fp16.to(torch_device)
329
330
331
332
333
334
335
336

    def test_bnb_4bit_wrong_config(self):
        r"""
        Test whether creating a bnb config with unsupported values leads to errors.
        """
        with self.assertRaises(ValueError):
            _ = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_storage="add")

337
338
339
340
341
342
343
    def test_bnb_4bit_errors_loading_incorrect_state_dict(self):
        r"""
        Test if loading with an incorrect state dict raises an error.
        """
        with tempfile.TemporaryDirectory() as tmpdirname:
            nf4_config = BitsAndBytesConfig(load_in_4bit=True)
            model_4bit = SD3Transformer2DModel.from_pretrained(
344
                self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
            )
            model_4bit.save_pretrained(tmpdirname)
            del model_4bit

            with self.assertRaises(ValueError) as err_context:
                state_dict = safetensors.torch.load_file(
                    os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")
                )

                # corrupt the state dict
                key_to_target = "context_embedder.weight"  # can be other keys too.
                compatible_param = state_dict[key_to_target]
                corrupted_param = torch.randn(compatible_param.shape[0] - 1, 1)
                state_dict[key_to_target] = bnb.nn.Params4bit(corrupted_param, requires_grad=False)
                safetensors.torch.save_file(
                    state_dict, os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")
                )

                _ = SD3Transformer2DModel.from_pretrained(tmpdirname)

            assert key_to_target in str(err_context.exception)

367
368
369

class BnB4BitTrainingTests(Base4bitTests):
    def setUp(self):
370
371
372
        gc.collect()
        torch.cuda.empty_cache()

373
374
375
376
377
378
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        self.model_4bit = SD3Transformer2DModel.from_pretrained(
379
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        )

    def test_training(self):
        # Step 1: freeze all parameters
        for param in self.model_4bit.parameters():
            param.requires_grad = False  # freeze the model - train adapters later
            if param.ndim == 1:
                # cast the small parameters (e.g. layernorm) to fp32 for stability
                param.data = param.data.to(torch.float32)

        # Step 2: add adapters
        for _, module in self.model_4bit.named_modules():
            if "Attention" in repr(type(module)):
                module.to_k = LoRALayer(module.to_k, rank=4)
                module.to_q = LoRALayer(module.to_q, rank=4)
                module.to_v = LoRALayer(module.to_v, rank=4)

        # Step 3: dummy batch
        input_dict_for_transformer = self.get_dummy_inputs()
        model_inputs = {
            k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool)
        }
        model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs})

        # Step 4: Check if the gradient is not None
405
        with torch.amp.autocast(torch_device, dtype=torch.float16):
406
407
408
409
410
411
412
413
414
415
416
417
            out = self.model_4bit(**model_inputs)[0]
            out.norm().backward()

        for module in self.model_4bit.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)


@require_transformers_version_greater("4.44.0")
class SlowBnb4BitTests(Base4bitTests):
    def setUp(self) -> None:
418
        gc.collect()
419
        backend_empty_cache(torch_device)
420

421
422
423
424
425
426
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
427
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
428
429
430
431
432
433
434
435
436
437
        )
        self.pipeline_4bit = DiffusionPipeline.from_pretrained(
            self.model_name, transformer=model_4bit, torch_dtype=torch.float16
        )
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
438
        backend_empty_cache(torch_device)
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    def test_quality(self):
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1123, 0.1296, 0.1609, 0.1042, 0.1230, 0.1274, 0.0928, 0.1165, 0.1216])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-2)

    def test_generate_quality_dequantize(self):
        r"""
        Test that loading the model and unquantize it produce correct results.
        """
        self.pipeline_4bit.transformer.dequantize()
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.1216, 0.1387, 0.1584, 0.1152, 0.1318, 0.1282, 0.1062, 0.1226, 0.1228])
        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

        # Since we offloaded the `pipeline_4bit.transformer` to CPU (result of `enable_model_cpu_offload()), check
        # the following.
        self.assertTrue(self.pipeline_4bit.transformer.device.type == "cpu")
        # calling it again shouldn't be a problem
        _ = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=2,
            generator=torch.manual_seed(self.seed),
            output_type="np",
        ).images

    def test_moving_to_cpu_throws_warning(self):
        nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        model_4bit = SD3Transformer2DModel.from_pretrained(
489
            self.model_name, subfolder="transformer", quantization_config=nf4_config, device_map=torch_device
490
491
492
493
494
495
496
497
498
499
500
501
502
        )

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            # Because `model.dtype` will return torch.float16 as SD3 transformer has
            # a conv layer as the first layer.
            _ = DiffusionPipeline.from_pretrained(
                self.model_name, transformer=model_4bit, torch_dtype=torch.float16
            ).to("cpu")

        assert "Pipelines loaded with `dtype=torch.float16`" in cap_logger.out

503
504
505
506
507
    @pytest.mark.xfail(
        condition=is_accelerate_version("<=", "1.1.1"),
        reason="Test will pass after https://github.com/huggingface/accelerate/pull/3223 is in a release.",
        strict=True,
    )
508
    def test_pipeline_device_placement_works_with_nf4(self):
509
510
511
512
513
514
515
516
517
518
        transformer_nf4_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        transformer_4bit = SD3Transformer2DModel.from_pretrained(
            self.model_name,
            subfolder="transformer",
            quantization_config=transformer_nf4_config,
            torch_dtype=torch.float16,
519
            device_map=torch_device,
520
521
522
523
524
525
526
527
528
529
530
        )
        text_encoder_3_nf4_config = BnbConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )
        text_encoder_3_4bit = T5EncoderModel.from_pretrained(
            self.model_name,
            subfolder="text_encoder_3",
            quantization_config=text_encoder_3_nf4_config,
            torch_dtype=torch.float16,
531
            device_map=torch_device,
532
533
534
535
536
537
538
        )
        # CUDA device placement works.
        pipeline_4bit = DiffusionPipeline.from_pretrained(
            self.model_name,
            transformer=transformer_4bit,
            text_encoder_3=text_encoder_3_4bit,
            torch_dtype=torch.float16,
539
        ).to(torch_device)
540
541
542
543
544
545

        # Check if inference works.
        _ = pipeline_4bit("table", max_sequence_length=20, num_inference_steps=2)

        del pipeline_4bit

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    def test_device_map(self):
        """
        Test if the quantized model is working properly with "auto".
        cpu/disk offloading as well doesn't work with bnb.
        """

        def get_dummy_tensor_inputs(device=None, seed: int = 0):
            batch_size = 1
            num_latent_channels = 4
            num_image_channels = 3
            height = width = 4
            sequence_length = 48
            embedding_dim = 32

            torch.manual_seed(seed)
            hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(
                device, dtype=torch.bfloat16
            )
            torch.manual_seed(seed)
            encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(
                device, dtype=torch.bfloat16
            )

            torch.manual_seed(seed)
            pooled_prompt_embeds = torch.randn((batch_size, embedding_dim)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            text_ids = torch.randn((sequence_length, num_image_channels)).to(device, dtype=torch.bfloat16)

            torch.manual_seed(seed)
            image_ids = torch.randn((height * width, num_image_channels)).to(device, dtype=torch.bfloat16)

            timestep = torch.tensor([1.0]).to(device, dtype=torch.bfloat16).expand(batch_size)

            return {
                "hidden_states": hidden_states,
                "encoder_hidden_states": encoder_hidden_states,
                "pooled_projections": pooled_prompt_embeds,
                "txt_ids": text_ids,
                "img_ids": image_ids,
                "timestep": timestep,
            }

        inputs = get_dummy_tensor_inputs(torch_device)
        expected_slice = np.array(
            [0.47070312, 0.00390625, -0.03662109, -0.19628906, -0.53125, 0.5234375, -0.17089844, -0.59375, 0.578125]
        )

        # non sharded
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16
        )
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-pipe",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Params4bit))

        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()
        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

        # sharded

        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16
        )
        quantized_model = FluxTransformer2DModel.from_pretrained(
            "hf-internal-testing/tiny-flux-sharded",
            subfolder="transformer",
            quantization_config=quantization_config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
        )

        weight = quantized_model.transformer_blocks[0].ff.net[2].weight
        self.assertTrue(isinstance(weight, bnb.nn.modules.Params4bit))

        output = quantized_model(**inputs)[0]
        output_slice = output.flatten()[-9:].detach().float().cpu().numpy()

        self.assertTrue(numpy_cosine_similarity_distance(output_slice, expected_slice) < 1e-3)

634
635
636
637

@require_transformers_version_greater("4.44.0")
class SlowBnb4BitFluxTests(Base4bitTests):
    def setUp(self) -> None:
638
639
640
641
        gc.collect()
        torch.cuda.empty_cache()

        model_id = "hf-internal-testing/flux.1-dev-nf4-pkg"
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        t5_4bit = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2")
        transformer_4bit = FluxTransformer2DModel.from_pretrained(model_id, subfolder="transformer")
        self.pipeline_4bit = DiffusionPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            text_encoder_2=t5_4bit,
            transformer=transformer_4bit,
            torch_dtype=torch.float16,
        )
        self.pipeline_4bit.enable_model_cpu_offload()

    def tearDown(self):
        del self.pipeline_4bit

        gc.collect()
        torch.cuda.empty_cache()

    def test_quality(self):
        # keep the resolution and max tokens to a lower number for faster execution.
        output = self.pipeline_4bit(
            prompt=self.prompt,
            num_inference_steps=self.num_inference_steps,
            generator=torch.manual_seed(self.seed),
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
        ).images

        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.0583, 0.0586, 0.0632, 0.0815, 0.0813, 0.0947, 0.1040, 0.1145, 0.1265])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

676
    @require_peft_backend
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    def test_lora_loading(self):
        self.pipeline_4bit.load_lora_weights(
            hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
        )
        self.pipeline_4bit.set_adapters("hyper-sd", adapter_weights=0.125)

        output = self.pipeline_4bit(
            prompt=self.prompt,
            height=256,
            width=256,
            max_sequence_length=64,
            output_type="np",
            num_inference_steps=8,
            generator=torch.Generator().manual_seed(42),
        ).images
        out_slice = output[0, -3:, -3:, -1].flatten()
        expected_slice = np.array([0.5347, 0.5342, 0.5283, 0.5093, 0.4988, 0.5093, 0.5044, 0.5015, 0.4946])

        max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice)
        self.assertTrue(max_diff < 1e-3)

698
699
700
701
702

@slow
class BaseBnb4BitSerializationTests(Base4bitTests):
    def tearDown(self):
        gc.collect()
703
        backend_empty_cache(torch_device)
704
705
706
707
708
709
710
711
712
713
714
715
716
717

    def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True):
        r"""
        Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default.
        See ExtendedSerializationTest class for more params combinations.
        """

        self.quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type=quant_type,
            bnb_4bit_use_double_quant=double_quant,
            bnb_4bit_compute_dtype=torch.bfloat16,
        )
        model_0 = SD3Transformer2DModel.from_pretrained(
718
719
720
721
            self.model_name,
            subfolder="transformer",
            quantization_config=self.quantization_config,
            device_map=torch_device,
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
        )
        self.assertTrue("_pre_quantization_dtype" in model_0.config)
        with tempfile.TemporaryDirectory() as tmpdirname:
            model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization)

            config = SD3Transformer2DModel.load_config(tmpdirname)
            self.assertTrue("quantization_config" in config)
            self.assertTrue("_pre_quantization_dtype" not in config)

            model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname)

        # checking quantized linear module weight
        linear = get_some_linear_layer(model_1)
        self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)
        self.assertTrue(hasattr(linear.weight, "quant_state"))
        self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState)

        # checking memory footpring
        self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2)

        # Matching all parameters and their quant_state items:
        d0 = dict(model_0.named_parameters())
        d1 = dict(model_1.named_parameters())
        self.assertTrue(d0.keys() == d1.keys())

        for k in d0.keys():
            self.assertTrue(d0[k].shape == d1[k].shape)
            self.assertTrue(d0[k].device.type == d1[k].device.type)
            self.assertTrue(d0[k].device == d1[k].device)
            self.assertTrue(d0[k].dtype == d1[k].dtype)
            self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device)))

            if isinstance(d0[k], bnb.nn.modules.Params4bit):
                for v0, v1 in zip(
                    d0[k].quant_state.as_dict().values(),
                    d1[k].quant_state.as_dict().values(),
                ):
                    if isinstance(v0, torch.Tensor):
                        self.assertTrue(torch.equal(v0, v1.to(v0.device)))
                    else:
                        self.assertTrue(v0 == v1)

        # comparing forward() outputs
        dummy_inputs = self.get_dummy_inputs()
        inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)}
        inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs})
        out_0 = model_0(**inputs)[0]
        out_1 = model_1(**inputs)[0]
        self.assertTrue(torch.equal(out_0, out_1))


class ExtendedSerializationTest(BaseBnb4BitSerializationTests):
    """
    tests more combinations of parameters
    """

    def test_nf4_single_unsafe(self):
        self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False)

    def test_nf4_single_safe(self):
        self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True)

    def test_nf4_double_unsafe(self):
        self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False)

    # nf4 double safetensors quantization is tested in test_serialization() method from the parent class

    def test_fp4_single_unsafe(self):
        self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False)

    def test_fp4_single_safe(self):
        self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True)

    def test_fp4_double_unsafe(self):
        self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False)

    def test_fp4_double_safe(self):
        self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True)