scheduling_sde_ve.py 8.34 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

17
18
import warnings
from typing import Optional, Union
19
20
21
22

import numpy as np
import torch

23
from ..configuration_utils import ConfigMixin, register_to_config
24
25
26
from .scheduling_utils import SchedulerMixin


Patrick von Platen's avatar
Patrick von Platen committed
27
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
28
29
30
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

31
32
    :param snr: coefficient weighting the step from the model_output sample (from the network) to the random noise.
    :param sigma_min: initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
Nathan Lambert's avatar
Nathan Lambert committed
33
34
35
36
37
38
            distribution of the data.
    :param sigma_max: :param sampling_eps: the end value of sampling, where timesteps decrease progessively from 1 to
    epsilon. :param correct_steps: number of correction steps performed on a produced sample. :param tensor_format:
    "np" or "pt" for the expected format of samples passed to the Scheduler.
    """

39
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
40
41
42
43
44
45
46
47
48
49
    def __init__(
        self,
        num_train_timesteps=2000,
        snr=0.15,
        sigma_min=0.01,
        sigma_max=1348,
        sampling_eps=1e-5,
        correct_steps=1,
        tensor_format="pt",
    ):
50
51
52
53
54
        # self.sigmas = None
        # self.discrete_sigmas = None
        #
        # # setable values
        # self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
55
56
        self.timesteps = None

57
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
58
59

        self.tensor_format = tensor_format
Nathan Lambert's avatar
Nathan Lambert committed
60
61
        self.set_format(tensor_format=tensor_format)

62
63
    def set_timesteps(self, num_inference_steps, sampling_eps=None):
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Nathan Lambert's avatar
Nathan Lambert committed
64
65
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
66
            self.timesteps = np.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
67
        elif tensor_format == "pt":
68
            self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
69
70
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
Patrick von Platen's avatar
Patrick von Platen committed
71

72
73
74
75
    def set_sigmas(self, num_inference_steps, sigma_min=None, sigma_max=None, sampling_eps=None):
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
76
        if self.timesteps is None:
77
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
78

Nathan Lambert's avatar
Nathan Lambert committed
79
80
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
81
82
            self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
83
        elif tensor_format == "pt":
84
85
            self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def get_adjacent_sigma(self, timesteps, t):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
        elif tensor_format == "pt":
            return torch.where(
                timesteps == 0, torch.zeros_like(t), self.discrete_sigmas[timesteps - 1].to(timesteps.device)
            )

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

100
    def set_seed(self, seed):
101
102
103
104
105
        warnings.warn(
            "The method `set_seed` is deprecated and will be removed in version `0.4.0`. Please consider passing a"
            " generator instead.",
            DeprecationWarning,
        )
106
107
108
109
110
111
112
113
114
115
116
117
118
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            np.random.seed(seed)
        elif tensor_format == "pt":
            torch.manual_seed(seed)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def step_pred(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
119
120
        generator: Optional[torch.Generator] = None,
        **kwargs,
121
    ):
Nathan Lambert's avatar
Nathan Lambert committed
122
123
124
        """
        Predict the sample at the previous timestep by reversing the SDE.
        """
125
126
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
127

128
129
130
131
132
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

133
134
135
136
        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
137

138
139
140
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep)
        drift = self.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
141
142
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

143
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
144
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
145
        drift = drift - diffusion[:, None, None, None] ** 2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
146
147

        #  equation 6: sample noise for the diffusion term of
148
        noise = self.randn_like(sample, generator=generator)
149
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
150
        # TODO is the variable diffusion the correct scaling term for the noise?
151
        prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise  # add impact of diffusion field g
152

153
154
155
156
157
158
        return {"prev_sample": prev_sample, "prev_sample_mean": prev_sample_mean}

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sample: Union[torch.FloatTensor, np.ndarray],
159
160
        generator: Optional[torch.Generator] = None,
        **kwargs,
161
    ):
Nathan Lambert's avatar
Nathan Lambert committed
162
        """
163
164
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
Nathan Lambert's avatar
Nathan Lambert committed
165
        """
166
167
        if "seed" in kwargs and kwargs["seed"] is not None:
            self.set_seed(kwargs["seed"])
168

169
170
171
172
173
        if self.timesteps is None:
            raise ValueError(
                "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler"
            )

Nathan Lambert's avatar
Nathan Lambert committed
174
175
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
176
        noise = self.randn_like(sample, generator=generator)
177

178
179
        # compute step size from the model_output, the noise, and the snr
        grad_norm = self.norm(model_output)
Nathan Lambert's avatar
Nathan Lambert committed
180
        noise_norm = self.norm(noise)
Patrick von Platen's avatar
Patrick von Platen committed
181
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
182
183
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
184

185
186
187
        # compute corrected sample: model_output term and noise term
        prev_sample_mean = sample + step_size[:, None, None, None] * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
188

189
        return {"prev_sample": prev_sample}
Nathan Lambert's avatar
Nathan Lambert committed
190
191
192

    def __len__(self):
        return self.config.num_train_timesteps