unet_2d_condition.py 30.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import UNet2DConditionLoadersMixin
23
from ..utils import BaseOutput, logging
Patrick von Platen's avatar
Patrick von Platen committed
24
from .attention_processor import AttentionProcessor
25
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
26
from .modeling_utils import ModelMixin
27
from .unet_2d_blocks import (
28
29
30
31
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
32
    UNetMidBlock2DSimpleCrossAttn,
33
34
35
36
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
38


39
40
41
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


42
43
44
45
46
47
48
49
50
51
52
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


53
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
54
55
56
57
58
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
59
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
60
61

    Parameters:
62
63
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
64
65
66
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
67
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
68
69
70
71
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
72
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
73
74
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
            mid block layer if `None`.
Kashif Rasul's avatar
Kashif Rasul committed
75
76
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
77
78
79
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
80
81
82
83
84
85
86
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
87
            If `None`, it will skip the normalization and activation layers in post-processing
Kashif Rasul's avatar
Kashif Rasul committed
88
89
90
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
91
92
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
93
94
95
        class_embed_type (`str`, *optional*, defaults to None):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
            `"timestep"`, `"identity"`, or `"projection"`.
96
97
98
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
99
100
101
102
103
104
105
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
106
107
108
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
Kashif Rasul's avatar
Kashif Rasul committed
109
110
    """

111
112
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
116
117
118
119
120
121
122
123
124
125
126
127
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
128
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
129
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
130
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
131
132
133
134
135
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
136
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
137
138
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
Suraj Patil's avatar
Suraj Patil committed
139
        attention_head_dim: Union[int, Tuple[int]] = 8,
140
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
141
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
142
        class_embed_type: Optional[str] = None,
143
        num_class_embeds: Optional[int] = None,
144
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
145
        resnet_time_scale_shift: str = "default",
146
        time_embedding_type: str = "positional",
147
148
149
150
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
151
        projection_class_embeddings_input_dim: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155
156
    ):
        super().__init__()

        self.sample_size = sample_size

Will Berman's avatar
Will Berman committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
178
        # input
179
180
181
182
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
183
184

        # time
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        if time_embedding_type == "fourier":
            time_embed_dim = block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = block_out_channels[0] * 4

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
200
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
201
            )
Patrick von Platen's avatar
Patrick von Platen committed
202

203
204
205
206
207
208
209
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
210

211
        # class embedding
Will Berman's avatar
Will Berman committed
212
        if class_embed_type is None and num_class_embeds is not None:
213
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
214
215
216
217
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
218
219
220
221
222
223
224
225
226
227
228
229
230
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
231
232
        else:
            self.class_embedding = None
233

Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

237
238
239
        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
240
241
242
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
259
                resnet_groups=norm_num_groups,
260
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
261
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
262
                downsample_padding=downsample_padding,
263
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
264
                use_linear_projection=use_linear_projection,
265
                only_cross_attention=only_cross_attention[i],
266
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
267
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
268
269
270
271
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
            )
299
300
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
301
302
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
303

304
305
306
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
307
308
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
309
        reversed_attention_head_dim = list(reversed(attention_head_dim))
310
        only_cross_attention = list(reversed(only_cross_attention))
311

Patrick von Platen's avatar
Patrick von Platen committed
312
313
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
314
315
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
316
317
318
319
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

320
321
322
323
324
325
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
326
327
328
329
330
331
332
333

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
334
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
335
336
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
337
                resnet_groups=norm_num_groups,
338
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
339
                attn_num_head_channels=reversed_attention_head_dim[i],
340
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
341
                use_linear_projection=use_linear_projection,
342
                only_cross_attention=only_cross_attention[i],
343
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
344
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
349
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
350
351
352
353
354
355
356
357
358
359
360
361
362
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
363

364
    @property
Patrick von Platen's avatar
Patrick von Platen committed
365
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
366
367
368
369
370
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
371
        # set recursively
372
373
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
374
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
375
376
377
378
379
380
381
382
383
384
385
386
387
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
388
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
389
390
        r"""
        Parameters:
Patrick von Platen's avatar
Patrick von Platen committed
391
            `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
392
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Patrick von Platen's avatar
Patrick von Platen committed
393
                of **all** `Attention` layers.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
394
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
395
396
397
398
399
400
401
402
403
404
405

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
406
            if hasattr(module, "set_processor"):
407
408
409
410
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
411

412
413
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
414

415
416
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
417

418
    def set_attention_slice(self, slice_size):
419
420
        r"""
        Enable sliced attention computation.
421

422
423
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
424

425
426
427
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
428
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
429
430
431
432
433
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
434
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
435
436
437
438
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
439
                fn_recursive_retrieve_sliceable_dims(child)
440
441
442

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
443
            fn_recursive_retrieve_sliceable_dims(module)
444

Alexander Pivovarov's avatar
Alexander Pivovarov committed
445
        num_sliceable_layers = len(sliceable_head_dims)
446
447
448
449
450
451
452

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
453
            slice_size = num_sliceable_layers * [1]
454

Alexander Pivovarov's avatar
Alexander Pivovarov committed
455
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
456
457
458
459
460
461

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
482

483
484
485
486
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
487
488
489
490
491
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
492
        class_labels: Optional[torch.Tensor] = None,
493
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
494
        attention_mask: Optional[torch.Tensor] = None,
495
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
496
497
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
498
499
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
500
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
501
502
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
503
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
504
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
505
506
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
507
            cross_attention_kwargs (`dict`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
508
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
509
510
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Kashif Rasul's avatar
Kashif Rasul committed
511
512
513
514
515
516

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
517
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
518
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
519
520
521
522
523
524
525
526
527
528
529
530
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Will Berman's avatar
Will Berman committed
531
532
533
534
535
        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
536
537
538
539
540
541
542
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
543
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
544
545
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
546
            if isinstance(timestep, float):
547
548
549
550
551
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
552
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
553

554
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
555
        timesteps = timesteps.expand(sample.shape[0])
556

Patrick von Platen's avatar
Patrick von Platen committed
557
        t_emb = self.time_proj(timesteps)
558
559
560
561
562

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
563
564

        emb = self.time_embedding(t_emb, timestep_cond)
Patrick von Platen's avatar
Patrick von Platen committed
565

Will Berman's avatar
Will Berman committed
566
        if self.class_embedding is not None:
567
568
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
569
570
571
572

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

573
574
575
            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

Patrick von Platen's avatar
Patrick von Platen committed
576
577
578
579
580
581
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
582
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
583
                sample, res_samples = downsample_block(
584
585
586
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
587
                    attention_mask=attention_mask,
588
                    cross_attention_kwargs=cross_attention_kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
589
590
591
592
593
594
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

595
596
597
598
599
600
        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
601
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
602
603
604
605
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

Patrick von Platen's avatar
Patrick von Platen committed
606
        # 4. mid
607
608
609
610
611
612
613
614
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )
Patrick von Platen's avatar
Patrick von Platen committed
615

616
        if mid_block_additional_residual is not None:
617
            sample = sample + mid_block_additional_residual
618

Patrick von Platen's avatar
Patrick von Platen committed
619
        # 5. up
620
621
622
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
623
624
625
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

626
627
628
629
630
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

631
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
632
633
634
635
636
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
637
                    cross_attention_kwargs=cross_attention_kwargs,
638
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
639
                    attention_mask=attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
640
641
                )
            else:
642
643
644
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
645

Patrick von Platen's avatar
Patrick von Platen committed
646
        # 6. post-process
647
648
649
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
650
651
        sample = self.conv_out(sample)

652
653
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
654

655
        return UNet2DConditionOutput(sample=sample)