test_stable_diffusion.py 61.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
import traceback
21
22
23
24
import unittest

import numpy as np
import torch
25
from huggingface_hub import hf_hub_download
Aryan's avatar
Aryan committed
26
27
28
29
30
from transformers import (
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
)
31
32
33
34

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
35
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
36
37
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
40
41
42
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
43
    logging,
44
)
45
46
47
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Patrick von Platen's avatar
Patrick von Platen committed
48
    load_image,
Dhruv Nair's avatar
Dhruv Nair committed
49
50
    load_numpy,
    nightly,
51
    numpy_cosine_similarity_distance,
52
    require_accelerate_version_greater,
Dhruv Nair's avatar
Dhruv Nair committed
53
    require_python39_or_higher,
54
55
    require_torch_2,
    require_torch_gpu,
56
    require_torch_multi_gpu,
57
    run_test_in_subprocess,
58
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
59
60
    slow,
    torch_device,
61
)
62

63
64
65
66
67
68
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
Aryan's avatar
Aryan committed
69
70
71
72
73
74
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
75

76

77
78
79
80
81
82
enable_full_determinism()


# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
83
    try:
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
103

104
105
106
107
108
109
110
        assert np.abs(image_slice - expected_slice).max() < 5e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
111
112


113
class StableDiffusionPipelineFastTests(
Aryan's avatar
Aryan committed
114
115
116
117
118
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
119
):
120
    pipeline_class = StableDiffusionPipeline
121
122
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
123
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
124
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
125
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
126

Patrick von Platen's avatar
Patrick von Platen committed
127
    def get_dummy_components(self, time_cond_proj_dim=None):
128
129
        cross_attention_dim = 8

130
        torch.manual_seed(0)
131
        unet = UNet2DConditionModel(
132
133
            block_out_channels=(4, 8),
            layers_per_block=1,
134
            sample_size=32,
Patrick von Platen's avatar
Patrick von Platen committed
135
            time_cond_proj_dim=time_cond_proj_dim,
136
137
138
139
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
140
            cross_attention_dim=cross_attention_dim,
141
            norm_num_groups=2,
142
        )
143
144
145
146
147
148
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
149
150
        )
        torch.manual_seed(0)
151
        vae = AutoencoderKL(
152
            block_out_channels=[4, 8],
153
154
155
156
157
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
158
            norm_num_groups=2,
159
160
        )
        torch.manual_seed(0)
161
        text_encoder_config = CLIPTextConfig(
162
163
            bos_token_id=0,
            eos_token_id=2,
164
165
            hidden_size=cross_attention_dim,
            intermediate_size=16,
166
            layer_norm_eps=1e-05,
167
168
            num_attention_heads=2,
            num_hidden_layers=2,
169
170
171
            pad_token_id=1,
            vocab_size=1000,
        )
172
173
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
174

175
176
177
178
179
180
181
182
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
183
            "image_encoder": None,
184
185
186
187
188
189
190
191
192
193
194
195
196
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
Aryan's avatar
Aryan committed
197
            "output_type": "np",
198
199
        }
        return inputs
200
201
202
203

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

204
205
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
206
        sd_pipe = sd_pipe.to(torch_device)
207
208
        sd_pipe.set_progress_bar_config(disable=None)

209
210
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
211
212
213
214
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

215
        assert image.shape == (1, 64, 64, 3)
216
        expected_slice = np.array([0.1763, 0.4776, 0.4986, 0.2566, 0.3802, 0.4596, 0.5363, 0.3277, 0.3949])
217
218
219

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def test_stable_diffusion_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
236
        expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133])
Patrick von Platen's avatar
Patrick von Platen committed
237
238
239

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def test_stable_diffusion_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
258
        expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133])
259
260
261

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    def test_stable_diffusion_ays(self):
        from diffusers.schedulers import AysSchedules

        timestep_schedule = AysSchedules["StableDiffusionTimesteps"]
        sigma_schedule = AysSchedules["StableDiffusionSigmas"]

        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = 10
        output = sd_pipe(**inputs).images

        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = None
        inputs["timesteps"] = timestep_schedule
        output_ts = sd_pipe(**inputs).images

        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = None
        inputs["sigmas"] = sigma_schedule
        output_sigmas = sd_pipe(**inputs).images

        assert (
            np.abs(output_sigmas.flatten() - output_ts.flatten()).max() < 1e-3
        ), "ays timesteps and ays sigmas should have the same outputs"
        assert (
            np.abs(output.flatten() - output_ts.flatten()).max() > 1e-3
        ), "use ays timesteps should have different outputs"
        assert (
            np.abs(output.flatten() - output_sigmas.flatten()).max() > 1e-3
        ), "use ays sigmas should have different outputs"

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    def test_stable_diffusion_prompt_embeds_no_text_encoder_or_tokenizer(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = "this is a negative prompt"

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = inputs.pop("prompt")
        negative_prompt = "this is a negative prompt"

        prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt(
            prompt,
            torch_device,
            1,
            True,
            negative_prompt=negative_prompt,
            prompt_embeds=None,
            negative_prompt_embeds=None,
        )

        inputs["prompt_embeds"] = prompt_embeds
        inputs["negative_prompt_embeds"] = negative_prompt_embeds

        sd_pipe.text_encoder = None
        sd_pipe.tokenizer = None

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

454
455
456
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

457
458
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
459
460
461
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

462
463
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
464
465
466
467
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

468
        assert image.shape == (1, 136, 136, 3)
469
        expected_slice = np.array([0.4720, 0.5426, 0.5160, 0.3961, 0.4696, 0.4296, 0.5738, 0.5888, 0.5481])
470
471
472
473
474

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
475
476
477
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
478
479
480
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

481
482
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
483
484
485
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

486
        assert image.shape == (1, 64, 64, 3)
487
        expected_slice = np.array([0.1941, 0.4748, 0.4880, 0.2222, 0.4221, 0.4545, 0.5604, 0.3488, 0.3902])
488

489
490
491
492
493
494
495
496
497
498
499
500
501
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

502
503
504
505
506
507
508
509
510
511
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

512
513
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
514

515
516
517
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
518
519
520
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

521
522
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
523
524
525
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

526
        assert image.shape == (1, 64, 64, 3)
527
        expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855])
528

hlky's avatar
hlky committed
529
530
531
532
533
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

534
535
536
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
537
538
539
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

540
541
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
542
543
544
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

545
        assert image.shape == (1, 64, 64, 3)
546
        expected_slice = np.array([0.2682, 0.4782, 0.4855, 0.2424, 0.4472, 0.4479, 0.5612, 0.3676, 0.3854])
547

hlky's avatar
hlky committed
548
549
550
551
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
552

553
554
555
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
556
557
558
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

559
560
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
561
562
563
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

564
        assert image.shape == (1, 64, 64, 3)
565
        expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855])
566

567
568
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

569
570
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
571
572
573
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
574
575
576
577
578
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

579
580
581
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
582
583
584

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
585
586
587
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
588
589
590
591

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

615
616
617
618
619
620
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

621
622
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
623
624
625
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
626
627
628
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

629
        inputs = self.get_dummy_inputs(device)
630
        negative_prompt = "french fries"
631
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
632
633
634
635

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

636
        assert image.shape == (1, 64, 64, 3)
637
        expected_slice = np.array([0.1907, 0.4709, 0.4858, 0.2224, 0.4223, 0.4539, 0.5606, 0.3489, 0.3900])
638

639
640
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

641
    def test_stable_diffusion_long_prompt(self):
642
643
644
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
645
646
647
648
649
650
651
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
652
        logger.setLevel(logging.WARNING)
653
654
655

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
656
            negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
657
658
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
659
660
            if negative_text_embeddings is not None:
                text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
661

662
663
664
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25

665
666
        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
667
            negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
668
669
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
670
671
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
672

673
674
675
676
677
678
679
680
681
682
        assert cap_logger.out == cap_logger_2.out

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
            if negative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])

683
684
685
686
        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77
        assert cap_logger_3.out == ""

687
    def test_stable_diffusion_height_width_opt(self):
688
689
690
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
691
692
693
694
695
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

696
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
697
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
698
        assert image_shape == (64, 64)
699

700
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
701
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
702
        assert image_shape == (96, 96)
703
704
705

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
706
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
707
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
708
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
709
        assert image_shape == (192, 192)
710

711
712
713
714
715
716
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

717
718
    # MPS currently doesn't support ComplexFloats, which are required for freeU - see https://github.com/huggingface/diffusers/issues/7569.
    @skip_mps
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    def test_freeu_enabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."

    def test_freeu_disabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        sd_pipe.disable_freeu()

        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in sd_pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        output_no_freeu = sd_pipe(
            prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)
        ).images

        assert np.allclose(
            output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1]
        ), "Disabling of FreeU should lead to results similar to the default pipeline results."

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        sd_pipe.fuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        sd_pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

Dhruv Nair's avatar
Dhruv Nair committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    def test_pipeline_interrupt(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        num_inference_steps = 3

        # store intermediate latents from the generation process
        class PipelineState:
            def __init__(self):
                self.state = []

            def apply(self, pipe, i, t, callback_kwargs):
                self.state.append(callback_kwargs["latents"])
                return callback_kwargs

        pipe_state = PipelineState()
        sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="np",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=pipe_state.apply,
        ).images

        # interrupt generation at step index
        interrupt_step_idx = 1

        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if i == interrupt_step_idx:
                pipe._interrupt = True

            return callback_kwargs

        output_interrupted = sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="latent",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=callback_on_step_end,
        ).images

        # fetch intermediate latents at the interrupted step
        # from the completed generation process
        intermediate_latent = pipe_state.state[interrupt_step_idx]

        # compare the intermediate latent to the output of the interrupted process
        # they should be the same
        assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

843
844

@slow
845
@require_torch_gpu
846
class StableDiffusionPipelineSlowTests(unittest.TestCase):
847
    def setUp(self):
848
849
850
        gc.collect()
        torch.cuda.empty_cache()

851
852
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
853
854
855
856
857
858
859
860
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
861
            "output_type": "np",
862
863
864
865
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
866
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
867
868
869
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

870
871
872
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
873

874
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
875
        expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059])
876
        assert np.abs(image_slice - expected_slice).max() < 3e-3
877

878
879
880
881
882
883
884
885
886
887
888
889
890
891
    def test_stable_diffusion_v1_4_with_freeu(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        image = sd_pipe(**inputs).images
        image = image[0, -3:, -3:, -1].flatten()
        expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309]
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

892
893
894
895
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
896

897
898
899
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
900

901
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
902
        expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575])
903
        assert np.abs(image_slice - expected_slice).max() < 3e-3
904

905
906
907
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
908
909
910
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

911
912
913
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
914

915
916
917
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
918

919
920
921
922
923
924
925
926
927
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
928
929

        assert image.shape == (1, 512, 512, 3)
930
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
931
        assert np.abs(image_slice - expected_slice).max() < 3e-3
932

933
934
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
935
936
937
938
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            sd_pipe.scheduler.config,
            final_sigmas_type="sigma_min",
        )
939
940
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
941

942
943
944
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
945
946

        assert image.shape == (1, 512, 512, 3)
947
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
948
        assert np.abs(image_slice - expected_slice).max() < 3e-3
949

950
    def test_stable_diffusion_attention_slicing(self):
951
        torch.cuda.reset_peak_memory_stats()
952
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
953
        pipe.unet.set_default_attn_processor()
954
        pipe = pipe.to(torch_device)
955
956
        pipe.set_progress_bar_config(disable=None)

957
        # enable attention slicing
958
        pipe.enable_attention_slicing()
959
960
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
961
962
963
964
965
966

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

967
        # disable slicing
968
        pipe.disable_attention_slicing()
969
        pipe.unet.set_default_attn_processor()
970
971
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
972
973
974
975

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
976
977
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-3
978

979
980
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
981
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
982
        pipe = pipe.to(torch_device)
983
984
985
986
987
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
988
989
990
991
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
992
993
994
995
996
997
998
999

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
1000
1001
1002
1003
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
1004
1005
1006
1007
1008

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
1009
1010
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-2
1011

1012
1013
1014
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
1015
1016
1017
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
        )
1018
1019
1020
1021
1022
1023
1024
1025
1026
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
1027
1028
1029
1030
1031
1032
1033
1034
1035
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
1036
            output_type="np",
1037
1038
        )
        image_chunked = output_chunked.images
1039
1040
1041
1042
1043

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
1044
1045
1046
1047
1048
1049
1050
1051
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
1052
            output_type="np",
1053
1054
        )
        image = output.images
1055

1056
        assert mem_bytes < 1e10
1057
1058
        max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
        assert max_diff < 1e-2
1059

1060
    def test_stable_diffusion_fp16_vs_autocast(self):
1061
1062
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
1063
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1064
        pipe = pipe.to(torch_device)
1065
1066
        pipe.set_progress_bar_config(disable=None)

1067
1068
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
1069
1070

        with torch.autocast(torch_device):
1071
1072
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
1073
1074

        # Make sure results are close enough
1075
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
1076
1077
1078
1079
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

1080
    def test_stable_diffusion_intermediate_state(self):
1081
1082
        number_of_steps = 0

1083
        def callback_fn(step: int, timestep: int, latents: torch.Tensor) -> None:
1084
            callback_fn.has_been_called = True
1085
1086
            nonlocal number_of_steps
            number_of_steps += 1
1087
            if step == 1:
1088
1089
1090
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1091
1092
1093
1094
1095
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1096
            elif step == 2:
1097
1098
1099
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1100
1101
1102
1103
1104
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1105

1106
        callback_fn.has_been_called = False
1107

1108
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1109
1110
1111
1112
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

1113
1114
1115
1116
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
1117

1118
    def test_stable_diffusion_low_cpu_mem_usage(self):
1119
1120
1121
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
1122
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
1123
1124
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
1125
1126

        start_time = time.time()
1127
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
1128
        normal_load_time = time.time() - start_time
1129

1130
        assert 2 * low_cpu_mem_usage_time < normal_load_time
1131

1132
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
1133
1134
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1135
        torch.cuda.reset_peak_memory_stats()
1136

1137
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1138
1139
1140
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
1141

1142
1143
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
1144
1145

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1146
1147
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
1148

1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1162
        pipe.unet.set_default_attn_processor()
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1175
        pipe.unet.set_default_attn_processor()
1176
1177
1178
1179
1180
1181
1182

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
1183
1184
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

1185
1186
1187
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

1188
1189
1190
1191
1192
        images = outputs.images
        offloaded_images = outputs_offloaded.images

        max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
        assert max_diff < 1e-3
1193
1194
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
1195
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
1233
        assert max_diff < 8e-1
1234

1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
    def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_model_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

    def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_sequential_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

Dhruv Nair's avatar
Dhruv Nair committed
1285
    @require_python39_or_higher
1286
    @require_torch_2
1287
    def test_stable_diffusion_compile(self):
1288
1289
1290
1291
1292
1293
1294
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
1295

Patrick von Platen's avatar
Patrick von Platen committed
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
    def test_stable_diffusion_lcm(self):
        unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet")
        sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 6
        inputs["output_type"] = "pil"

        image = sd_pipe(**inputs).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png"
        )

        image = sd_pipe.image_processor.pil_to_numpy(image)
        expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image)

        max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())

        assert max_diff < 1e-2

1319

1lint's avatar
1lint committed
1320
1321
1322
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
1323
1324
1325
1326
1327
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1lint's avatar
1lint committed
1328
1329
1330
1331
1332
1333
1334
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
1335
1336
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors",
1lint's avatar
1lint committed
1337
1338
1339
        ]

        for ckpt_path in ckpt_paths:
Patrick von Platen's avatar
Patrick von Platen committed
1340
            pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1341
1342
1343
1344
1345
1346
1347
1348
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
1349
        ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.safetensors")
1350
        config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml")
1lint's avatar
1lint committed
1351

1352
1353
1354
        pipe = StableDiffusionPipeline.from_single_file(
            ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16
        )
1lint's avatar
1lint committed
1355
1356
1357
1358
1359
1360
1361
1362
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)


1363
1364
1365
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
1366
1367
1368
1369
1370
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1371
1372
1373
1374
1375
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1376
1377
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1378
1379
1380
1381
1382
1383
1384
1385
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
1386
            "output_type": "np",
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
1431
        assert max_diff < 3e-3
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579


# (sayakpaul): This test suite was run in the DGX with two GPUs (1, 2).
@slow
@require_torch_multi_gpu
@require_accelerate_version_greater("0.27.0")
class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, generator_device="cpu", seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def get_pipeline_output_without_device_map(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
        ).to(torch_device)
        sd_pipe.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        no_device_map_image = sd_pipe(**inputs).images

        del sd_pipe

        return no_device_map_image

    def test_forward_pass_balanced_device_map(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_components_put_in_right_devices(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )

        assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2

    def test_max_memory(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5",
            device_map="balanced",
            max_memory={0: "1GB", 1: "1GB"},
            torch_dtype=torch.float16,
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_reset_device_map(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        for name, component in sd_pipe_with_device_map.components.items():
            if isinstance(component, torch.nn.Module):
                assert component.device.type == "cpu"

    def test_reset_device_map_to(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `to()` can be used and the pipeline can be called.
        pipe = sd_pipe_with_device_map.to("cuda")
        _ = pipe("hello", num_inference_steps=2)

    def test_reset_device_map_enable_model_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_model_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_model_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)

    def test_reset_device_map_enable_sequential_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_sequential_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_sequential_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)