test_stable_diffusion.py 43.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
21
22
23
import unittest

import numpy as np
import torch
24
from huggingface_hub import hf_hub_download
25
from packaging import version
26
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
27
28
29
30

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
32
33
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
34
35
36
37
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
38
    logging,
39
)
1lint's avatar
1lint committed
40
from diffusers.models.attention_processor import AttnProcessor
41
from diffusers.utils import load_numpy, nightly, slow, torch_device
42
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
43

44
from ...models.test_models_unet_2d_condition import create_lora_layers
45
46
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
47

48
49
50
51

torch.backends.cuda.matmul.allow_tf32 = False


52
class StableDiffusionPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
53
    pipeline_class = StableDiffusionPipeline
54
55
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
56
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
57

58
    def get_dummy_components(self):
59
        torch.manual_seed(0)
60
        unet = UNet2DConditionModel(
61
62
63
64
65
66
67
68
69
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
70
71
72
73
74
75
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
76
77
        )
        torch.manual_seed(0)
78
        vae = AutoencoderKL(
79
80
81
82
83
84
85
86
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
87
        text_encoder_config = CLIPTextConfig(
88
89
90
91
92
93
94
95
96
97
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
98
99
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
125
126
127
128

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

129
130
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
131
        sd_pipe = sd_pipe.to(torch_device)
132
133
        sd_pipe.set_progress_bar_config(disable=None)

134
135
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
136
137
138
139
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

140
        assert image.shape == (1, 64, 64, 3)
141
        expected_slice = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864])
142
143
144

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def test_stable_diffusion_lora(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        # forward 1
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        # set lora layers
        lora_attn_procs = create_lora_layers(sd_pipe.unet)
        sd_pipe.unet.set_attn_processor(lora_attn_procs)
        sd_pipe = sd_pipe.to(torch_device)

        # forward 2
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.0})
        image = output.images
        image_slice_1 = image[0, -3:, -3:, -1]

        # forward 3
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, cross_attention_kwargs={"scale": 0.5})
        image = output.images
        image_slice_2 = image[0, -3:, -3:, -1]

        assert np.abs(image_slice - image_slice_1).max() < 1e-2
        assert np.abs(image_slice - image_slice_2).max() > 1e-2

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

294
295
296
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

297
298
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
299
300
301
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

302
303
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
304
305
306
307
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

308
309
        assert image.shape == (1, 136, 136, 3)
        expected_slice = np.array([0.5524, 0.5626, 0.6069, 0.4727, 0.386, 0.3995, 0.4613, 0.4328, 0.4269])
310
311
312
313
314

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
315
316
317
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
318
319
320
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

321
322
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
323
324
325
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

326
        assert image.shape == (1, 64, 64, 3)
327
        expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994])
328

329
330
331
332
333
334
335
336
337
338
339
340
341
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

342
343
344
345
346
347
348
349
350
351
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

352
353
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
354

355
356
357
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
358
359
360
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

361
362
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
363
364
365
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

366
        assert image.shape == (1, 64, 64, 3)
367
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
368

hlky's avatar
hlky committed
369
370
371
372
373
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

374
375
376
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
377
378
379
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

380
381
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
382
383
384
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

385
        assert image.shape == (1, 64, 64, 3)
386
        expected_slice = np.array([0.4872, 0.5444, 0.4846, 0.5003, 0.5549, 0.4850, 0.5189, 0.4941, 0.5067])
387

hlky's avatar
hlky committed
388
389
390
391
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
392

393
394
395
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
396
397
398
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

399
400
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
401
402
403
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

404
        assert image.shape == (1, 64, 64, 3)
405
        expected_slice = np.array([0.4873, 0.5443, 0.4845, 0.5004, 0.5549, 0.4850, 0.5191, 0.4941, 0.5065])
406

407
408
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

409
410
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
411
412
413
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
414
415
416
417
418
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

419
420
421
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
422
423
424

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
425
426
427
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
428
429
430
431

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

455
456
457
458
459
460
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

461
462
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
463
464
465
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
466
467
468
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

469
        inputs = self.get_dummy_inputs(device)
470
        negative_prompt = "french fries"
471
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
472
473
474
475

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

476
        assert image.shape == (1, 64, 64, 3)
477
        expected_slice = np.array([0.5114, 0.5706, 0.4772, 0.5028, 0.5637, 0.4732, 0.5169, 0.4881, 0.4977])
478

479
480
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

481
    def test_stable_diffusion_long_prompt(self):
482
483
484
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            text_embeddings_3 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
            text_embeddings = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
            text_embeddings_2 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

519
    def test_stable_diffusion_height_width_opt(self):
520
521
522
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
523
524
525
526
527
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

528
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
529
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
530
        assert image_shape == (64, 64)
531

532
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
533
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
534
        assert image_shape == (96, 96)
535
536
537

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
538
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
539
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
540
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
541
        assert image_shape == (192, 192)
542

543
544

@slow
545
@require_torch_gpu
546
class StableDiffusionPipelineSlowTests(unittest.TestCase):
547
548
549
550
551
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

552
553
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
554
555
556
557
558
559
560
561
562
563
564
565
566
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
567
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
568
569
570
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

571
572
573
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
574

575
576
577
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.43625, 0.43554, 0.36670, 0.40660, 0.39703, 0.38658, 0.43936, 0.43557, 0.40592])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
578

579
580
581
582
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
583

584
585
586
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
587

588
589
590
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.57400, 0.47841, 0.31625, 0.63583, 0.58306, 0.55056, 0.50825, 0.56306, 0.55748])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
591

592
593
594
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
595
596
597
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

598
599
600
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
601

602
603
604
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
605

606
607
608
609
610
611
612
613
614
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
615
616

        assert image.shape == (1, 512, 512, 3)
617
618
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
619

620
621
622
623
624
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
625

626
627
628
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
629
630

        assert image.shape == (1, 512, 512, 3)
631
632
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
633

634
    def test_stable_diffusion_attention_slicing(self):
635
        torch.cuda.reset_peak_memory_stats()
636
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
637
        pipe = pipe.to(torch_device)
638
639
        pipe.set_progress_bar_config(disable=None)

640
        # enable attention slicing
641
        pipe.enable_attention_slicing()
642
643
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
644
645
646
647
648
649

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

650
        # disable slicing
651
        pipe.disable_attention_slicing()
652
653
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
654
655
656
657

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
658
        assert np.abs(image_sliced - image).max() < 1e-3
659

660
661
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
662
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
663
        pipe = pipe.to(torch_device)
664
665
666
667
668
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
669
670
671
672
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
673
674
675
676
677
678
679
680

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
681
682
683
684
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
685
686
687
688
689

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
690
        assert np.abs(image_sliced - image).max() < 1e-2
691

692
693
694
695
696
697
698
699
700
701
702
703
704
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
705
706
707
708
709
710
711
712
713
714
715
716
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image_chunked = output_chunked.images
717
718
719
720
721

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
722
723
724
725
726
727
728
729
730
731
732
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        )
        image = output.images
733

734
        assert mem_bytes < 1e10
735
736
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-2

737
    def test_stable_diffusion_fp16_vs_autocast(self):
738
739
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
740
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
741
        pipe = pipe.to(torch_device)
742
743
        pipe.set_progress_bar_config(disable=None)

744
745
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
746
747

        with torch.autocast(torch_device):
748
749
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
750
751

        # Make sure results are close enough
752
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
753
754
755
756
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

757
    def test_stable_diffusion_intermediate_state(self):
758
759
        number_of_steps = 0

760
761
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
762
763
            nonlocal number_of_steps
            number_of_steps += 1
764
            if step == 1:
765
766
767
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
768
769
770
771
772
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
773
            elif step == 2:
774
775
776
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
777
778
779
780
781
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
782

783
        callback_fn.has_been_called = False
784

785
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
786
787
788
789
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

790
791
792
793
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
794

795
    def test_stable_diffusion_low_cpu_mem_usage(self):
796
797
798
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
799
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
800
801
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
802
803

        start_time = time.time()
804
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
805
        normal_load_time = time.time() - start_time
806

807
        assert 2 * low_cpu_mem_usage_time < normal_load_time
808

809
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
810
811
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
812
        torch.cuda.reset_peak_memory_stats()
813

814
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
815
816
817
818
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
819

820
821
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
822
823

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
824
825
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
826

827
828
829
830
831
832
833
834
835
836
837
838
839
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
840
        pipe.unet.set_default_attn_processor()
841
842
843
844
845
846
847
848
849
850
851
852
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
853
        pipe.unet.set_default_attn_processor()
854
855
856
857
858
859
860

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
861
862
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae, pipe.safety_checker:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
907
        assert max_diff < 5e-2
908

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    def test_stable_diffusion_compile(self):
        if version.parse(torch.__version__) < version.parse("2.0"):
            print(f"Test `test_stable_diffusion_ddim` is skipped because {torch.__version__} is < 2.0")
            return

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 5e-3

931

1lint's avatar
1lint committed
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
        ]

        for ckpt_path in ckpt_paths:
            pipe = StableDiffusionPipeline.from_ckpt(ckpt_path, torch_dtype=torch.float16)
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")

        pipe = StableDiffusionPipeline.from_ckpt(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"

        pipe = StableDiffusionPipeline.from_ckpt(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
        image_ckpt = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
        image = pipe("a turtle", num_inference_steps=5, generator=generator, output_type="np").images[0]

        assert np.max(np.abs(image - image_ckpt)) < 1e-4


988
989
990
991
992
993
994
995
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

996
997
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3