test_stable_diffusion.py 61.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
import traceback
21
22
23
24
import unittest

import numpy as np
import torch
25
from huggingface_hub import hf_hub_download
Aryan's avatar
Aryan committed
26
27
28
29
30
from transformers import (
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
)
31
32
33
34

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
35
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
36
37
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
40
41
42
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
43
    logging,
44
)
45
from diffusers.models.attention_processor import AttnProcessor
46
47
48
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Patrick von Platen's avatar
Patrick von Platen committed
49
    load_image,
Dhruv Nair's avatar
Dhruv Nair committed
50
51
    load_numpy,
    nightly,
52
    numpy_cosine_similarity_distance,
53
    require_accelerate_version_greater,
Dhruv Nair's avatar
Dhruv Nair committed
54
    require_python39_or_higher,
55
56
    require_torch_2,
    require_torch_gpu,
57
    require_torch_multi_gpu,
58
    run_test_in_subprocess,
59
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
60
61
    slow,
    torch_device,
62
)
63

64
65
66
67
68
69
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
Aryan's avatar
Aryan committed
70
71
72
73
74
75
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
76

77

78
79
80
81
82
83
enable_full_determinism()


# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
84
    try:
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
104

105
106
107
108
109
110
111
        assert np.abs(image_slice - expected_slice).max() < 5e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
112
113


114
class StableDiffusionPipelineFastTests(
Aryan's avatar
Aryan committed
115
116
117
118
119
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
120
):
121
    pipeline_class = StableDiffusionPipeline
122
123
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
124
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
125
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
126
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
127

Patrick von Platen's avatar
Patrick von Platen committed
128
    def get_dummy_components(self, time_cond_proj_dim=None):
129
130
        cross_attention_dim = 8

131
        torch.manual_seed(0)
132
        unet = UNet2DConditionModel(
133
134
            block_out_channels=(4, 8),
            layers_per_block=1,
135
            sample_size=32,
Patrick von Platen's avatar
Patrick von Platen committed
136
            time_cond_proj_dim=time_cond_proj_dim,
137
138
139
140
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
141
            cross_attention_dim=cross_attention_dim,
142
            norm_num_groups=2,
143
        )
144
145
146
147
148
149
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
150
151
        )
        torch.manual_seed(0)
152
        vae = AutoencoderKL(
153
            block_out_channels=[4, 8],
154
155
156
157
158
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
159
            norm_num_groups=2,
160
161
        )
        torch.manual_seed(0)
162
        text_encoder_config = CLIPTextConfig(
163
164
            bos_token_id=0,
            eos_token_id=2,
165
166
            hidden_size=cross_attention_dim,
            intermediate_size=16,
167
            layer_norm_eps=1e-05,
168
169
            num_attention_heads=2,
            num_hidden_layers=2,
170
171
172
            pad_token_id=1,
            vocab_size=1000,
        )
173
174
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
175

176
177
178
179
180
181
182
183
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
184
            "image_encoder": None,
185
186
187
188
189
190
191
192
193
194
195
196
197
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
Aryan's avatar
Aryan committed
198
            "output_type": "np",
199
200
        }
        return inputs
201
202
203
204

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

205
206
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
207
        sd_pipe = sd_pipe.to(torch_device)
208
209
        sd_pipe.set_progress_bar_config(disable=None)

210
211
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
212
213
214
215
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

216
        assert image.shape == (1, 64, 64, 3)
217
        expected_slice = np.array([0.1763, 0.4776, 0.4986, 0.2566, 0.3802, 0.4596, 0.5363, 0.3277, 0.3949])
218
219
220

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def test_stable_diffusion_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
237
        expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133])
Patrick von Platen's avatar
Patrick von Platen committed
238
239
240

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    def test_stable_diffusion_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
259
        expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133])
260
261
262

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

378
379
380
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

381
382
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
383
384
385
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

386
387
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
388
389
390
391
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

392
        assert image.shape == (1, 136, 136, 3)
393
        expected_slice = np.array([0.4720, 0.5426, 0.5160, 0.3961, 0.4696, 0.4296, 0.5738, 0.5888, 0.5481])
394
395
396
397
398

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
399
400
401
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
402
403
404
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

405
406
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
407
408
409
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

410
        assert image.shape == (1, 64, 64, 3)
411
        expected_slice = np.array([0.1941, 0.4748, 0.4880, 0.2222, 0.4221, 0.4545, 0.5604, 0.3488, 0.3902])
412

413
414
415
416
417
418
419
420
421
422
423
424
425
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

426
427
428
429
430
431
432
433
434
435
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

436
437
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
438

439
440
441
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
442
443
444
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

445
446
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
447
448
449
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

450
        assert image.shape == (1, 64, 64, 3)
451
        expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855])
452

hlky's avatar
hlky committed
453
454
455
456
457
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

458
459
460
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
461
462
463
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

464
465
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
466
467
468
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

469
        assert image.shape == (1, 64, 64, 3)
470
        expected_slice = np.array([0.2682, 0.4782, 0.4855, 0.2424, 0.4472, 0.4479, 0.5612, 0.3676, 0.3854])
471

hlky's avatar
hlky committed
472
473
474
475
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
476

477
478
479
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
480
481
482
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

483
484
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
485
486
487
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

488
        assert image.shape == (1, 64, 64, 3)
489
        expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855])
490

491
492
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

493
494
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
495
496
497
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
498
499
500
501
502
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

503
504
505
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
506
507
508

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
509
510
511
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
512
513
514
515

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

539
540
541
542
543
544
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

545
546
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
547
548
549
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
550
551
552
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

553
        inputs = self.get_dummy_inputs(device)
554
        negative_prompt = "french fries"
555
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
556
557
558
559

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

560
        assert image.shape == (1, 64, 64, 3)
561
        expected_slice = np.array([0.1907, 0.4709, 0.4858, 0.2224, 0.4223, 0.4539, 0.5606, 0.3489, 0.3900])
562

563
564
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

565
    def test_stable_diffusion_long_prompt(self):
566
567
568
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
569
570
571
572
573
574
575
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
576
        logger.setLevel(logging.WARNING)
577
578
579

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
580
            negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
581
582
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
583
584
            if negative_text_embeddings is not None:
                text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
585

586
587
588
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25

589
590
        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
591
            negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
592
593
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
594
595
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
596

597
598
599
600
601
602
603
604
605
606
        assert cap_logger.out == cap_logger_2.out

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
            if negative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])

607
608
609
610
        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77
        assert cap_logger_3.out == ""

611
    def test_stable_diffusion_height_width_opt(self):
612
613
614
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
615
616
617
618
619
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

620
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
621
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
622
        assert image_shape == (64, 64)
623

624
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
625
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
626
        assert image_shape == (96, 96)
627
628
629

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
630
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
631
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
632
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
633
        assert image_shape == (192, 192)
634

635
636
637
638
639
640
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

641
642
    # MPS currently doesn't support ComplexFloats, which are required for freeU - see https://github.com/huggingface/diffusers/issues/7569.
    @skip_mps
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    def test_freeu_enabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."

    def test_freeu_disabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        sd_pipe.disable_freeu()

        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in sd_pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        output_no_freeu = sd_pipe(
            prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)
        ).images

        assert np.allclose(
            output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1]
        ), "Disabling of FreeU should lead to results similar to the default pipeline results."

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        sd_pipe.fuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        sd_pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

Dhruv Nair's avatar
Dhruv Nair committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    def test_pipeline_interrupt(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        num_inference_steps = 3

        # store intermediate latents from the generation process
        class PipelineState:
            def __init__(self):
                self.state = []

            def apply(self, pipe, i, t, callback_kwargs):
                self.state.append(callback_kwargs["latents"])
                return callback_kwargs

        pipe_state = PipelineState()
        sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="np",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=pipe_state.apply,
        ).images

        # interrupt generation at step index
        interrupt_step_idx = 1

        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if i == interrupt_step_idx:
                pipe._interrupt = True

            return callback_kwargs

        output_interrupted = sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="latent",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=callback_on_step_end,
        ).images

        # fetch intermediate latents at the interrupted step
        # from the completed generation process
        intermediate_latent = pipe_state.state[interrupt_step_idx]

        # compare the intermediate latent to the output of the interrupted process
        # they should be the same
        assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

767
768

@slow
769
@require_torch_gpu
770
class StableDiffusionPipelineSlowTests(unittest.TestCase):
771
    def setUp(self):
772
773
774
        gc.collect()
        torch.cuda.empty_cache()

775
776
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
777
778
779
780
781
782
783
784
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
785
            "output_type": "np",
786
787
788
789
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
790
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
791
792
793
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

794
795
796
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
797

798
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
799
        expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059])
800
        assert np.abs(image_slice - expected_slice).max() < 3e-3
801

802
803
804
805
806
807
808
809
810
811
812
813
814
815
    def test_stable_diffusion_v1_4_with_freeu(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        image = sd_pipe(**inputs).images
        image = image[0, -3:, -3:, -1].flatten()
        expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309]
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

816
817
818
819
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
820

821
822
823
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
824

825
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
826
        expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575])
827
        assert np.abs(image_slice - expected_slice).max() < 3e-3
828

829
830
831
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
832
833
834
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

835
836
837
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
838

839
840
841
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
842

843
844
845
846
847
848
849
850
851
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
852
853

        assert image.shape == (1, 512, 512, 3)
854
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
855
        assert np.abs(image_slice - expected_slice).max() < 3e-3
856

857
858
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
859
860
861
862
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            sd_pipe.scheduler.config,
            final_sigmas_type="sigma_min",
        )
863
864
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
865

866
867
868
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
869
870

        assert image.shape == (1, 512, 512, 3)
871
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
872
        assert np.abs(image_slice - expected_slice).max() < 3e-3
873

874
    def test_stable_diffusion_attention_slicing(self):
875
        torch.cuda.reset_peak_memory_stats()
876
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
877
        pipe.unet.set_default_attn_processor()
878
        pipe = pipe.to(torch_device)
879
880
        pipe.set_progress_bar_config(disable=None)

881
        # enable attention slicing
882
        pipe.enable_attention_slicing()
883
884
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
885
886
887
888
889
890

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

891
        # disable slicing
892
        pipe.disable_attention_slicing()
893
        pipe.unet.set_default_attn_processor()
894
895
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
896
897
898
899

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
900
901
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-3
902

903
904
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
905
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
906
        pipe = pipe.to(torch_device)
907
908
909
910
911
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
912
913
914
915
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
916
917
918
919
920
921
922
923

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
924
925
926
927
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
928
929
930
931
932

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
933
934
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-2
935

936
937
938
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
939
940
941
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
        )
942
943
944
945
946
947
948
949
950
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
951
952
953
954
955
956
957
958
959
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
960
            output_type="np",
961
962
        )
        image_chunked = output_chunked.images
963
964
965
966
967

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
968
969
970
971
972
973
974
975
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
976
            output_type="np",
977
978
        )
        image = output.images
979

980
        assert mem_bytes < 1e10
981
982
        max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
        assert max_diff < 1e-2
983

984
    def test_stable_diffusion_fp16_vs_autocast(self):
985
986
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
987
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
988
        pipe = pipe.to(torch_device)
989
990
        pipe.set_progress_bar_config(disable=None)

991
992
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
993
994

        with torch.autocast(torch_device):
995
996
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
997
998

        # Make sure results are close enough
999
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
1000
1001
1002
1003
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

1004
    def test_stable_diffusion_intermediate_state(self):
1005
1006
        number_of_steps = 0

1007
1008
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
1009
1010
            nonlocal number_of_steps
            number_of_steps += 1
1011
            if step == 1:
1012
1013
1014
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1015
1016
1017
1018
1019
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1020
            elif step == 2:
1021
1022
1023
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1024
1025
1026
1027
1028
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1029

1030
        callback_fn.has_been_called = False
1031

1032
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1033
1034
1035
1036
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

1037
1038
1039
1040
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
1041

1042
    def test_stable_diffusion_low_cpu_mem_usage(self):
1043
1044
1045
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
1046
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
1047
1048
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
1049
1050

        start_time = time.time()
1051
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
1052
        normal_load_time = time.time() - start_time
1053

1054
        assert 2 * low_cpu_mem_usage_time < normal_load_time
1055

1056
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
1057
1058
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1059
        torch.cuda.reset_peak_memory_stats()
1060

1061
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1062
1063
1064
1065
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
1066

1067
1068
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
1069
1070

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1071
1072
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
1073

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1087
        pipe.unet.set_default_attn_processor()
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1100
        pipe.unet.set_default_attn_processor()
1101
1102
1103
1104
1105
1106
1107

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
1108
1109
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

1110
1111
1112
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

1113
1114
1115
1116
1117
        images = outputs.images
        offloaded_images = outputs_offloaded.images

        max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
        assert max_diff < 1e-3
1118
1119
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
1120
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
1158
        assert max_diff < 8e-1
1159

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_model_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

    def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_sequential_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

Dhruv Nair's avatar
Dhruv Nair committed
1210
    @require_python39_or_higher
1211
    @require_torch_2
1212
    def test_stable_diffusion_compile(self):
1213
1214
1215
1216
1217
1218
1219
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
1220

Patrick von Platen's avatar
Patrick von Platen committed
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
    def test_stable_diffusion_lcm(self):
        unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet")
        sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 6
        inputs["output_type"] = "pil"

        image = sd_pipe(**inputs).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png"
        )

        image = sd_pipe.image_processor.pil_to_numpy(image)
        expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image)

        max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())

        assert max_diff < 1e-2

1244

1lint's avatar
1lint committed
1245
1246
1247
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
1248
1249
1250
1251
1252
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1lint's avatar
1lint committed
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix_base.ckpt",
        ]

        for ckpt_path in ckpt_paths:
Patrick von Platen's avatar
Patrick von Platen committed
1265
            pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1266
1267
1268
1269
1270
1271
1272
1273
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
1274
1275
        ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.ckpt")
        config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml")
1lint's avatar
1lint committed
1276

1277
1278
1279
        pipe = StableDiffusionPipeline.from_single_file(
            ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16
        )
1lint's avatar
1lint committed
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"

1290
1291
1292
1293
        sf_pipe = StableDiffusionPipeline.from_single_file(ckpt_path)
        sf_pipe.scheduler = DDIMScheduler.from_config(sf_pipe.scheduler.config)
        sf_pipe.unet.set_attn_processor(AttnProcessor())
        sf_pipe.to("cuda")
1lint's avatar
1lint committed
1294
1295

        generator = torch.Generator(device="cpu").manual_seed(0)
1296
        image_single_file = sf_pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1297
1298
1299
1300
1301
1302
1303

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(0)
1304
        image = pipe("a turtle", num_inference_steps=2, generator=generator, output_type="np").images[0]
1lint's avatar
1lint committed
1305

1306
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten())
1307
1308

        assert max_diff < 1e-3
1lint's avatar
1lint committed
1309

1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
    def test_single_file_component_configs(self):
        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt"
        single_file_pipe = StableDiffusionPipeline.from_single_file(ckpt_path, load_safety_checker=True)

        for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
            if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
                continue
            assert pipe.text_encoder.config.to_dict()[param_name] == param_value

        PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "architectures", "_use_default_values"]
        for param_name, param_value in single_file_pipe.unet.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.unet.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.vae.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.vae.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.safety_checker.config.to_dict().items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.safety_checker.config.to_dict()[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

1lint's avatar
1lint committed
1343

1344
1345
1346
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
1347
1348
1349
1350
1351
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1352
1353
1354
1355
1356
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1357
1358
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1359
1360
1361
1362
1363
1364
1365
1366
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
1367
            "output_type": "np",
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
1412
        assert max_diff < 3e-3
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560


# (sayakpaul): This test suite was run in the DGX with two GPUs (1, 2).
@slow
@require_torch_multi_gpu
@require_accelerate_version_greater("0.27.0")
class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, generator_device="cpu", seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def get_pipeline_output_without_device_map(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
        ).to(torch_device)
        sd_pipe.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        no_device_map_image = sd_pipe(**inputs).images

        del sd_pipe

        return no_device_map_image

    def test_forward_pass_balanced_device_map(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_components_put_in_right_devices(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )

        assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2

    def test_max_memory(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5",
            device_map="balanced",
            max_memory={0: "1GB", 1: "1GB"},
            torch_dtype=torch.float16,
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_reset_device_map(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        for name, component in sd_pipe_with_device_map.components.items():
            if isinstance(component, torch.nn.Module):
                assert component.device.type == "cpu"

    def test_reset_device_map_to(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `to()` can be used and the pipeline can be called.
        pipe = sd_pipe_with_device_map.to("cuda")
        _ = pipe("hello", num_inference_steps=2)

    def test_reset_device_map_enable_model_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_model_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_model_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)

    def test_reset_device_map_enable_sequential_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_sequential_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_sequential_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)