unet_2d_condition.py 29.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Any, Dict, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
16
17
18

import torch
import torch.nn as nn
19
import torch.utils.checkpoint
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from ..configuration_utils import ConfigMixin, register_to_config
22
from ..loaders import UNet2DConditionLoadersMixin
23
from ..utils import BaseOutput, logging
24
from .cross_attention import AttnProcessor
25
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
26
from .modeling_utils import ModelMixin
27
from .unet_2d_blocks import (
28
29
30
31
    CrossAttnDownBlock2D,
    CrossAttnUpBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
Will Berman's avatar
Will Berman committed
32
    UNetMidBlock2DSimpleCrossAttn,
33
34
35
36
    UpBlock2D,
    get_down_block,
    get_up_block,
)
Patrick von Platen's avatar
Patrick von Platen committed
37
38


39
40
41
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


42
43
44
45
46
47
48
49
50
51
52
@dataclass
class UNet2DConditionOutput(BaseOutput):
    """
    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model.
    """

    sample: torch.FloatTensor


53
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
Kashif Rasul's avatar
Kashif Rasul committed
54
55
56
57
58
    r"""
    UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep
    and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
59
    implements for all the models (such as downloading or saving, etc.)
Kashif Rasul's avatar
Kashif Rasul committed
60
61

    Parameters:
62
63
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Kashif Rasul's avatar
Kashif Rasul committed
64
65
66
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
67
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
Kashif Rasul's avatar
Kashif Rasul committed
68
69
70
71
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
72
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
73
74
            The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the
            mid block layer if `None`.
Kashif Rasul's avatar
Kashif Rasul committed
75
76
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`):
            The tuple of upsample blocks to use.
77
78
79
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
Kashif Rasul's avatar
Kashif Rasul committed
80
81
82
83
84
85
86
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
87
            If `None`, it will skip the normalization and activation layers in post-processing
Kashif Rasul's avatar
Kashif Rasul committed
88
89
90
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
        cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
Will Berman's avatar
Will Berman committed
91
92
93
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to None): The type of class embedding to use which is ultimately
Will Berman's avatar
Will Berman committed
94
            summed with the time embeddings. Choose from `None`, `"timestep"`, `"identity"`, or `"projection"`.
95
96
97
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
98
99
100
101
102
103
104
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
105
106
107
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
Kashif Rasul's avatar
Kashif Rasul committed
108
109
    """

110
111
    _supports_gradient_checkpointing = True

Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
    @register_to_config
    def __init__(
        self,
Sid Sahai's avatar
Sid Sahai committed
115
116
117
118
119
120
121
122
123
124
125
126
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
127
        mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
Sid Sahai's avatar
Sid Sahai committed
128
        up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
129
        only_cross_attention: Union[bool, Tuple[bool]] = False,
Sid Sahai's avatar
Sid Sahai committed
130
131
132
133
134
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
135
        norm_num_groups: Optional[int] = 32,
Sid Sahai's avatar
Sid Sahai committed
136
137
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
Suraj Patil's avatar
Suraj Patil committed
138
        attention_head_dim: Union[int, Tuple[int]] = 8,
139
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
140
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
141
        class_embed_type: Optional[str] = None,
142
        num_class_embeds: Optional[int] = None,
143
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
144
        resnet_time_scale_shift: str = "default",
145
146
147
148
149
        time_embedding_type: str = "positional",  # fourier, positional
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
150
        projection_class_embeddings_input_dim: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154
155
    ):
        super().__init__()

        self.sample_size = sample_size

Will Berman's avatar
Will Berman committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Patrick von Platen's avatar
Patrick von Platen committed
177
        # input
178
179
180
181
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
182
183

        # time
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        if time_embedding_type == "fourier":
            time_embed_dim = block_out_channels[0] * 2
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
            time_embed_dim = block_out_channels[0] * 4

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
                f"{time_embedding_type} does not exist. Pleaes make sure to use one of `fourier` or `positional`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
201

202
203
204
205
206
207
208
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
Patrick von Platen's avatar
Patrick von Platen committed
209

210
        # class embedding
Will Berman's avatar
Will Berman committed
211
        if class_embed_type is None and num_class_embeds is not None:
212
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
213
214
215
216
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
217
218
219
220
221
222
223
224
225
226
227
228
229
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
230
231
        else:
            self.class_embedding = None
232

Patrick von Platen's avatar
Patrick von Platen committed
233
234
235
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

236
237
238
        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
239
240
241
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
258
                resnet_groups=norm_num_groups,
259
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
260
                attn_num_head_channels=attention_head_dim[i],
Patrick von Platen's avatar
Patrick von Platen committed
261
                downsample_padding=downsample_padding,
262
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
263
                use_linear_projection=use_linear_projection,
264
                only_cross_attention=only_cross_attention[i],
265
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
266
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
267
268
269
270
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        if mid_block_type == "UNetMidBlock2DCrossAttn":
            self.mid_block = UNetMidBlock2DCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
            self.mid_block = UNetMidBlock2DSimpleCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
            )
298
299
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
300
301
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
Patrick von Platen's avatar
Patrick von Platen committed
302

303
304
305
        # count how many layers upsample the images
        self.num_upsamplers = 0

Patrick von Platen's avatar
Patrick von Platen committed
306
307
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
Suraj Patil's avatar
Suraj Patil committed
308
        reversed_attention_head_dim = list(reversed(attention_head_dim))
309
        only_cross_attention = list(reversed(only_cross_attention))
310

Patrick von Platen's avatar
Patrick von Platen committed
311
312
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
313
314
            is_final_block = i == len(block_out_channels) - 1

Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

319
320
321
322
323
324
            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False
Patrick von Platen's avatar
Patrick von Platen committed
325
326
327
328
329
330
331
332

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
333
                add_upsample=add_upsample,
Patrick von Platen's avatar
Patrick von Platen committed
334
335
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
336
                resnet_groups=norm_num_groups,
337
                cross_attention_dim=cross_attention_dim,
Suraj Patil's avatar
Suraj Patil committed
338
                attn_num_head_channels=reversed_attention_head_dim[i],
339
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
340
                use_linear_projection=use_linear_projection,
341
                only_cross_attention=only_cross_attention[i],
342
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
343
                resnet_time_scale_shift=resnet_time_scale_shift,
Patrick von Platen's avatar
Patrick von Platen committed
344
345
346
347
348
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
349
350
351
352
353
354
355
356
357
358
359
360
361
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
            self.conv_act = nn.SiLU()
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = nn.Conv2d(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
Patrick von Platen's avatar
Patrick von Platen committed
362

363
364
365
366
367
368
369
    @property
    def attn_processors(self) -> Dict[str, AttnProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
370
        # set recursively
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttnProcessor]):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]):
        r"""
        Parameters:
            `processor (`dict` of `AttnProcessor` or `AttnProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                of **all** `CrossAttention` layers.
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainablae attention processors.:

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
405
            if hasattr(module, "set_processor"):
406
407
408
409
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
410

411
412
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
413

414
415
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
416

417
    def set_attention_slice(self, slice_size):
418
419
        r"""
        Enable sliced attention computation.
420

421
422
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_slicable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_slicable_dims(module)

        num_slicable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_slicable_layers * [1]

        slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )
461

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
481

482
483
484
485
    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
            module.gradient_checkpointing = value

Patrick von Platen's avatar
Patrick von Platen committed
486
487
488
489
490
    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
491
        class_labels: Optional[torch.Tensor] = None,
492
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
493
        attention_mask: Optional[torch.Tensor] = None,
494
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
495
496
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
497
        r"""
Kashif Rasul's avatar
Kashif Rasul committed
498
499
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
500
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
501
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
Kashif Rasul's avatar
Kashif Rasul committed
502
503
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
504
505
506
507
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
Kashif Rasul's avatar
Kashif Rasul committed
508
509
510
511
512
513

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

Will Berman's avatar
Will Berman committed
528
529
530
531
532
        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

Patrick von Platen's avatar
Patrick von Platen committed
533
534
535
536
537
538
539
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
540
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
541
542
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
543
            if isinstance(timestep, float):
544
545
546
547
548
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
549
            timesteps = timesteps[None].to(sample.device)
Patrick von Platen's avatar
Patrick von Platen committed
550

551
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
552
        timesteps = timesteps.expand(sample.shape[0])
553

Patrick von Platen's avatar
Patrick von Platen committed
554
        t_emb = self.time_proj(timesteps)
555
556
557
558
559

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
560
561

        emb = self.time_embedding(t_emb, timestep_cond)
Patrick von Platen's avatar
Patrick von Platen committed
562

Will Berman's avatar
Will Berman committed
563
        if self.class_embedding is not None:
564
565
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
566
567
568
569

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

570
571
572
            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

Patrick von Platen's avatar
Patrick von Platen committed
573
574
575
576
577
578
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
579
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
580
                sample, res_samples = downsample_block(
581
582
583
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
584
                    attention_mask=attention_mask,
585
                    cross_attention_kwargs=cross_attention_kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
586
587
588
589
590
591
592
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
593
594
595
596
597
598
599
600
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )
Patrick von Platen's avatar
Patrick von Platen committed
601
602

        # 5. up
603
604
605
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

Patrick von Platen's avatar
Patrick von Platen committed
606
607
608
            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

609
610
611
612
613
            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

614
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
Patrick von Platen's avatar
Patrick von Platen committed
615
616
617
618
619
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
620
                    cross_attention_kwargs=cross_attention_kwargs,
621
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
622
                    attention_mask=attention_mask,
Patrick von Platen's avatar
Patrick von Platen committed
623
624
                )
            else:
625
626
627
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
Patrick von Platen's avatar
Patrick von Platen committed
628
        # 6. post-process
629
630
631
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
Patrick von Platen's avatar
Patrick von Platen committed
632
633
        sample = self.conv_out(sample)

634
635
        if not return_dict:
            return (sample,)
Patrick von Platen's avatar
Patrick von Platen committed
636

637
        return UNet2DConditionOutput(sample=sample)