single_file_utils.py 101 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Conversion script for the Stable Diffusion checkpoints."""
16

17
import copy
18
19
20
21
22
23
24
import os
import re
from contextlib import nullcontext
from io import BytesIO
from urllib.parse import urlparse

import requests
Dhruv Nair's avatar
Dhruv Nair committed
25
import torch
26
27
28
29
30
31
import yaml

from ..models.modeling_utils import load_state_dict
from ..schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
32
    EDMDPMSolverMultistepScheduler,
33
34
35
36
37
38
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
39
40
41
42
43
44
45
46
from ..utils import (
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    deprecate,
    is_accelerate_available,
    is_transformers_available,
    logging,
)
47
48
49
50
from ..utils.hub_utils import _get_model_file


if is_transformers_available():
51
    from transformers import AutoImageProcessor
52
53
54
55

if is_accelerate_available():
    from accelerate import init_empty_weights

56
57
    from ..models.modeling_utils import load_model_dict_into_meta

58
59
60
61
62
63
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

CHECKPOINT_KEY_NAMES = {
    "v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
    "xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias",
    "xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias",
64
    "upscale": "model.diffusion_model.input_blocks.10.0.skip_connection.bias",
65
66
67
68
69
70
71
72
    "controlnet": [
        "control_model.time_embed.0.weight",
        "controlnet_cond_embedding.conv_in.weight",
    ],
    # TODO: find non-Diffusers keys for controlnet_xl
    "controlnet_xl": "add_embedding.linear_1.weight",
    "controlnet_xl_large": "down_blocks.1.attentions.0.transformer_blocks.0.attn1.to_k.weight",
    "controlnet_xl_mid": "down_blocks.1.attentions.0.norm.weight",
73
74
    "playground-v2-5": "edm_mean",
    "inpainting": "model.diffusion_model.input_blocks.0.0.weight",
75
    "clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
76
    "clip_sdxl": "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight",
Dhruv Nair's avatar
Dhruv Nair committed
77
    "clip_sd3": "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight",
78
79
80
    "open_clip": "cond_stage_model.model.token_embedding.weight",
    "open_clip_sdxl": "conditioner.embedders.1.model.positional_embedding",
    "open_clip_sdxl_refiner": "conditioner.embedders.0.model.text_projection",
Dhruv Nair's avatar
Dhruv Nair committed
81
    "open_clip_sd3": "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight",
82
83
    "stable_cascade_stage_b": "down_blocks.1.0.channelwise.0.weight",
    "stable_cascade_stage_c": "clip_txt_mapper.weight",
84
85
86
87
88
89
90
91
    "sd3": [
        "joint_blocks.0.context_block.adaLN_modulation.1.bias",
        "model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias",
    ],
    "sd35_large": [
        "joint_blocks.37.x_block.mlp.fc1.weight",
        "model.diffusion_model.joint_blocks.37.x_block.mlp.fc1.weight",
    ],
92
    "animatediff": "down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.pos_encoder.pe",
93
94
    "animatediff_v2": "mid_block.motion_modules.0.temporal_transformer.norm.bias",
    "animatediff_sdxl_beta": "up_blocks.2.motion_modules.0.temporal_transformer.norm.weight",
95
96
    "animatediff_scribble": "controlnet_cond_embedding.conv_in.weight",
    "animatediff_rgb": "controlnet_cond_embedding.weight",
97
98
99
100
    "flux": [
        "double_blocks.0.img_attn.norm.key_norm.scale",
        "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale",
    ],
Aryan's avatar
Aryan committed
101
102
103
104
105
106
    "ltx-video": [
        (
            "model.diffusion_model.patchify_proj.weight",
            "model.diffusion_model.transformer_blocks.27.scale_shift_table",
        ),
    ],
107
108
    "autoencoder-dc": "decoder.stages.1.op_list.0.main.conv.conv.bias",
    "autoencoder-dc-sana": "encoder.project_in.conv.bias",
109
110
}

111
112
113
114
115
116
DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
    "xl_base": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-base-1.0"},
    "xl_refiner": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-refiner-1.0"},
    "xl_inpaint": {"pretrained_model_name_or_path": "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"},
    "playground-v2-5": {"pretrained_model_name_or_path": "playgroundai/playground-v2.5-1024px-aesthetic"},
    "upscale": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-x4-upscaler"},
117
    "inpainting": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-inpainting"},
118
119
    "inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"},
    "controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"},
120
121
122
    "controlnet_xl_large": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0"},
    "controlnet_xl_mid": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0-mid"},
    "controlnet_xl_small": {"pretrained_model_name_or_path": "diffusers/controlnet-canny-sdxl-1.0-small"},
123
    "v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"},
124
    "v1": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-v1-5"},
125
126
127
128
129
130
131
132
133
134
135
136
137
    "stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"},
    "stable_cascade_stage_b_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade",
        "subfolder": "decoder_lite",
    },
    "stable_cascade_stage_c": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior",
    },
    "stable_cascade_stage_c_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior_lite",
    },
Dhruv Nair's avatar
Dhruv Nair committed
138
139
140
    "sd3": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3-medium-diffusers",
    },
Dhruv Nair's avatar
Dhruv Nair committed
141
142
143
    "sd35_large": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3.5-large",
    },
144
145
146
    "sd35_medium": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3.5-medium",
    },
147
148
149
150
    "animatediff_v1": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5"},
    "animatediff_v2": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-2"},
    "animatediff_v3": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-3"},
    "animatediff_sdxl_beta": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-sdxl-beta"},
151
152
    "animatediff_scribble": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-scribble"},
    "animatediff_rgb": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-rgb"},
153
154
    "flux-dev": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-dev"},
    "flux-schnell": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-schnell"},
Aryan's avatar
Aryan committed
155
    "ltx-video": {"pretrained_model_name_or_path": "Lightricks/LTX-Video"},
156
157
158
159
    "autoencoder-dc-f128c512": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers"},
    "autoencoder-dc-f64c128": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f64c128-mix-1.0-diffusers"},
    "autoencoder-dc-f32c32": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f32c32-mix-1.0-diffusers"},
    "autoencoder-dc-f32c32-sana": {"pretrained_model_name_or_path": "mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers"},
160
161
}

162
163
164
165
166
167
168
169
170
171
172
173
# Use to configure model sample size when original config is provided
DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP = {
    "xl_base": 1024,
    "xl_refiner": 1024,
    "xl_inpaint": 1024,
    "playground-v2-5": 1024,
    "upscale": 512,
    "inpainting": 512,
    "inpainting_v2": 512,
    "controlnet": 512,
    "v2": 768,
    "v1": 512,
174
175
176
}


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
DIFFUSERS_TO_LDM_MAPPING = {
    "unet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "conv_norm_out.weight": "out.0.weight",
            "conv_norm_out.bias": "out.0.bias",
            "conv_out.weight": "out.2.weight",
            "conv_out.bias": "out.2.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "controlnet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight",
            "controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias",
            "controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight",
            "controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "vae": {
        "encoder.conv_in.weight": "encoder.conv_in.weight",
        "encoder.conv_in.bias": "encoder.conv_in.bias",
        "encoder.conv_out.weight": "encoder.conv_out.weight",
        "encoder.conv_out.bias": "encoder.conv_out.bias",
        "encoder.conv_norm_out.weight": "encoder.norm_out.weight",
        "encoder.conv_norm_out.bias": "encoder.norm_out.bias",
        "decoder.conv_in.weight": "decoder.conv_in.weight",
        "decoder.conv_in.bias": "decoder.conv_in.bias",
        "decoder.conv_out.weight": "decoder.conv_out.weight",
        "decoder.conv_out.bias": "decoder.conv_out.bias",
        "decoder.conv_norm_out.weight": "decoder.norm_out.weight",
        "decoder.conv_norm_out.bias": "decoder.norm_out.bias",
        "quant_conv.weight": "quant_conv.weight",
        "quant_conv.bias": "quant_conv.bias",
        "post_quant_conv.weight": "post_quant_conv.weight",
        "post_quant_conv.bias": "post_quant_conv.bias",
    },
    "openclip": {
        "layers": {
            "text_model.embeddings.position_embedding.weight": "positional_embedding",
            "text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "text_model.final_layer_norm.weight": "ln_final.weight",
            "text_model.final_layer_norm.bias": "ln_final.bias",
            "text_projection.weight": "text_projection",
        },
        "transformer": {
            "text_model.encoder.layers.": "resblocks.",
            "layer_norm1": "ln_1",
            "layer_norm2": "ln_2",
            ".fc1.": ".c_fc.",
            ".fc2.": ".c_proj.",
            ".self_attn": ".attn",
            "transformer.text_model.final_layer_norm.": "ln_final.",
            "transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "transformer.text_model.embeddings.position_embedding.weight": "positional_embedding",
        },
    },
}

SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight",
    "cond_stage_model.model.text_projection",
]

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# To support legacy scheduler_type argument
SCHEDULER_DEFAULT_CONFIG = {
    "beta_schedule": "scaled_linear",
    "beta_start": 0.00085,
    "beta_end": 0.012,
    "interpolation_type": "linear",
    "num_train_timesteps": 1000,
    "prediction_type": "epsilon",
    "sample_max_value": 1.0,
    "set_alpha_to_one": False,
    "skip_prk_steps": True,
    "steps_offset": 1,
    "timestep_spacing": "leading",
}

301
LDM_VAE_KEYS = ["first_stage_model.", "vae."]
302
303
304
305
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215
PLAYGROUND_VAE_SCALING_FACTOR = 0.5
LDM_UNET_KEY = "model.diffusion_model."
LDM_CONTROLNET_KEY = "control_model."
Dhruv Nair's avatar
Dhruv Nair committed
306
307
308
309
LDM_CLIP_PREFIX_TO_REMOVE = [
    "cond_stage_model.transformer.",
    "conditioner.embedders.0.transformer.",
]
310
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024
311
SCHEDULER_LEGACY_KWARGS = ["prediction_type", "scheduler_type"]
312
313
314
315

VALID_URL_PREFIXES = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]


316
317
318
319
320
321
322
323
324
325
326
327
328
329
class SingleFileComponentError(Exception):
    def __init__(self, message=None):
        self.message = message
        super().__init__(self.message)


def is_valid_url(url):
    result = urlparse(url)
    if result.scheme and result.netloc:
        return True

    return False


330
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path):
331
332
333
    if not is_valid_url(pretrained_model_name_or_path):
        raise ValueError("Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.")

334
335
336
337
338
339
340
    pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)"
    weights_name = None
    repo_id = (None,)
    for prefix in VALID_URL_PREFIXES:
        pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "")
    match = re.match(pattern, pretrained_model_name_or_path)
    if not match:
341
        logger.warning("Unable to identify the repo_id and weights_name from the provided URL.")
342
343
344
345
346
347
348
349
        return repo_id, weights_name

    repo_id = f"{match.group(1)}/{match.group(2)}"
    weights_name = match.group(3)

    return repo_id, weights_name


350
351
352
353
354
355
356
def _is_model_weights_in_cached_folder(cached_folder, name):
    pretrained_model_name_or_path = os.path.join(cached_folder, name)
    weights_exist = False

    for weights_name in [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME]:
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            weights_exist = True
357

358
    return weights_exist
359
360


361
362
363
364
def _is_legacy_scheduler_kwargs(kwargs):
    return any(k in SCHEDULER_LEGACY_KWARGS for k in kwargs.keys())


365
def load_single_file_checkpoint(
366
367
368
369
370
371
372
    pretrained_model_link_or_path,
    force_download=False,
    proxies=None,
    token=None,
    cache_dir=None,
    local_files_only=None,
    revision=None,
373
374
):
    if os.path.isfile(pretrained_model_link_or_path):
375
376
        pretrained_model_link_or_path = pretrained_model_link_or_path

377
378
    else:
        repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path)
379
        pretrained_model_link_or_path = _get_model_file(
380
381
382
383
384
385
386
387
388
            repo_id,
            weights_name=weights_name,
            force_download=force_download,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
        )
389
390

    checkpoint = load_state_dict(pretrained_model_link_or_path)
391
392
393
394
395

    # some checkpoints contain the model state dict under a "state_dict" key
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

396
    return checkpoint
397
398


399
400
401
402
def fetch_original_config(original_config_file, local_files_only=False):
    if os.path.isfile(original_config_file):
        with open(original_config_file, "r") as fp:
            original_config_file = fp.read()
403

404
405
406
407
408
409
    elif is_valid_url(original_config_file):
        if local_files_only:
            raise ValueError(
                "`local_files_only` is set to True, but a URL was provided as `original_config_file`. "
                "Please provide a valid local file path."
            )
410

411
        original_config_file = BytesIO(requests.get(original_config_file).content)
412

413
414
    else:
        raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.")
415

416
    original_config = yaml.safe_load(original_config_file)
417

418
    return original_config
419
420


421
422
423
def is_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip"] in checkpoint:
        return True
424

425
    return False
426
427


428
429
430
def is_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sdxl"] in checkpoint:
        return True
431

432
    return False
433
434


Dhruv Nair's avatar
Dhruv Nair committed
435
436
437
438
439
440
441
def is_clip_sd3_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sd3"] in checkpoint:
        return True

    return False


442
443
444
def is_open_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip"] in checkpoint:
        return True
445

446
    return False
447
448


449
450
451
def is_open_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl"] in checkpoint:
        return True
452

453
    return False
454
455


Dhruv Nair's avatar
Dhruv Nair committed
456
def is_open_clip_sd3_model(checkpoint):
457
458
459
460
    if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint:
        return True

    return False
Dhruv Nair's avatar
Dhruv Nair committed
461
462


463
def is_open_clip_sdxl_refiner_model(checkpoint):
464
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl_refiner"] in checkpoint:
465
466
467
468
469
470
471
472
473
        return True

    return False


def is_clip_model_in_single_file(class_obj, checkpoint):
    is_clip_in_checkpoint = any(
        [
            is_clip_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
474
            is_clip_sd3_model(checkpoint),
475
476
477
            is_open_clip_model(checkpoint),
            is_open_clip_sdxl_model(checkpoint),
            is_open_clip_sdxl_refiner_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
478
            is_open_clip_sd3_model(checkpoint),
479
        ]
480
    )
481
482
483
484
485
486
    if (
        class_obj.__name__ == "CLIPTextModel" or class_obj.__name__ == "CLIPTextModelWithProjection"
    ) and is_clip_in_checkpoint:
        return True

    return False
487
488


489
490
491
492
493
494
495
def infer_diffusers_model_type(checkpoint):
    if (
        CHECKPOINT_KEY_NAMES["inpainting"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["inpainting"]].shape[1] == 9
    ):
        if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
            model_type = "inpainting_v2"
496
497
        elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
            model_type = "xl_inpaint"
498
        else:
499
            model_type = "inpainting"
500

501
502
    elif CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
        model_type = "v2"
503

504
505
    elif CHECKPOINT_KEY_NAMES["playground-v2-5"] in checkpoint:
        model_type = "playground-v2-5"
506

507
508
    elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
        model_type = "xl_base"
509

510
511
    elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint:
        model_type = "xl_refiner"
512

513
514
    elif CHECKPOINT_KEY_NAMES["upscale"] in checkpoint:
        model_type = "upscale"
515

516
517
518
519
520
521
522
523
524
525
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["controlnet"]):
        if CHECKPOINT_KEY_NAMES["controlnet_xl"] in checkpoint:
            if CHECKPOINT_KEY_NAMES["controlnet_xl_large"] in checkpoint:
                model_type = "controlnet_xl_large"
            elif CHECKPOINT_KEY_NAMES["controlnet_xl_mid"] in checkpoint:
                model_type = "controlnet_xl_mid"
            else:
                model_type = "controlnet_xl_small"
        else:
            model_type = "controlnet"
526

527
528
529
530
531
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 1536
    ):
        model_type = "stable_cascade_stage_c_lite"
532

533
534
535
536
537
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 2048
    ):
        model_type = "stable_cascade_stage_c"
538

539
540
541
542
543
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 576
    ):
        model_type = "stable_cascade_stage_b_lite"
544
545

    elif (
546
547
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 640
548
    ):
549
        model_type = "stable_cascade_stage_b"
550

551
552
553
554
555
556
557
558
559
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["sd3"]) and any(
        checkpoint[key].shape[-1] == 9216 if key in checkpoint else False for key in CHECKPOINT_KEY_NAMES["sd3"]
    ):
        if "model.diffusion_model.pos_embed" in checkpoint:
            key = "model.diffusion_model.pos_embed"
        else:
            key = "pos_embed"

        if checkpoint[key].shape[1] == 36864:
560
            model_type = "sd3"
561
        elif checkpoint[key].shape[1] == 147456:
562
            model_type = "sd35_medium"
Dhruv Nair's avatar
Dhruv Nair committed
563

564
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["sd35_large"]):
Dhruv Nair's avatar
Dhruv Nair committed
565
566
        model_type = "sd35_large"

567
    elif CHECKPOINT_KEY_NAMES["animatediff"] in checkpoint:
568
569
570
571
572
573
574
        if CHECKPOINT_KEY_NAMES["animatediff_scribble"] in checkpoint:
            model_type = "animatediff_scribble"

        elif CHECKPOINT_KEY_NAMES["animatediff_rgb"] in checkpoint:
            model_type = "animatediff_rgb"

        elif CHECKPOINT_KEY_NAMES["animatediff_v2"] in checkpoint:
575
576
577
578
579
580
581
582
583
584
585
            model_type = "animatediff_v2"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff_sdxl_beta"]].shape[-1] == 320:
            model_type = "animatediff_sdxl_beta"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff"]].shape[1] == 24:
            model_type = "animatediff_v1"

        else:
            model_type = "animatediff_v3"

586
587
588
589
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["flux"]):
        if any(
            g in checkpoint for g in ["guidance_in.in_layer.bias", "model.diffusion_model.guidance_in.in_layer.bias"]
        ):
590
591
592
            model_type = "flux-dev"
        else:
            model_type = "flux-schnell"
593

Aryan's avatar
Aryan committed
594
595
596
    elif any(all(key in checkpoint for key in key_list) for key_list in CHECKPOINT_KEY_NAMES["ltx-video"]):
        model_type = "ltx-video"

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    elif CHECKPOINT_KEY_NAMES["autoencoder-dc"] in checkpoint:
        encoder_key = "encoder.project_in.conv.conv.bias"
        decoder_key = "decoder.project_in.main.conv.weight"

        if CHECKPOINT_KEY_NAMES["autoencoder-dc-sana"] in checkpoint:
            model_type = "autoencoder-dc-f32c32-sana"

        elif checkpoint[encoder_key].shape[-1] == 64 and checkpoint[decoder_key].shape[1] == 32:
            model_type = "autoencoder-dc-f32c32"

        elif checkpoint[encoder_key].shape[-1] == 64 and checkpoint[decoder_key].shape[1] == 128:
            model_type = "autoencoder-dc-f64c128"

        else:
            model_type = "autoencoder-dc-f128c512"

613
    else:
614
615
616
617
618
619
620
621
        model_type = "v1"

    return model_type


def fetch_diffusers_config(checkpoint):
    model_type = infer_diffusers_model_type(checkpoint)
    model_path = DIFFUSERS_DEFAULT_PIPELINE_PATHS[model_type]
622
    model_path = copy.deepcopy(model_path)
623
624
625
626
627
628

    return model_path


def set_image_size(checkpoint, image_size=None):
    if image_size:
629
630
        return image_size

631
632
633
634
635
    model_type = infer_diffusers_model_type(checkpoint)
    image_size = DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP[model_type]

    return image_size

636
637
638
639
640
641
642
643
644
645
646
647
648
649

# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


650
651
652
def create_unet_diffusers_config_from_ldm(
    original_config, checkpoint, image_size=None, upcast_attention=None, num_in_channels=None
):
653
654
655
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
656
657
658
659
660
661
662
663
664
    if image_size is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `image_size` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

665
666
667
668
669
670
671
672
    if (
        "unet_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["unet_config"] is not None
    ):
        unet_params = original_config["model"]["params"]["unet_config"]["params"]
    else:
        unet_params = original_config["model"]["params"]["network_config"]["params"]

673
674
675
676
677
678
679
680
681
682
    if num_in_channels is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `num_in_channels` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        in_channels = num_in_channels
    else:
        in_channels = unet_params["in_channels"]

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
    block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
        up_block_types.append(block_type)
        resolution //= 2

    if unet_params["transformer_depth"] is not None:
        transformer_layers_per_block = (
            unet_params["transformer_depth"]
            if isinstance(unet_params["transformer_depth"], int)
            else list(unet_params["transformer_depth"])
        )
    else:
        transformer_layers_per_block = 1

    vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)

    head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
            head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]

    class_embed_type = None
    addition_embed_type = None
    addition_time_embed_dim = None
    projection_class_embeddings_input_dim = None
    context_dim = None

    if unet_params["context_dim"] is not None:
        context_dim = (
            unet_params["context_dim"]
            if isinstance(unet_params["context_dim"], int)
            else unet_params["context_dim"][0]
        )

    if "num_classes" in unet_params:
        if unet_params["num_classes"] == "sequential":
            if context_dim in [2048, 1280]:
                # SDXL
                addition_embed_type = "text_time"
                addition_time_embed_dim = 256
            else:
                class_embed_type = "projection"
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params["adm_in_channels"]

    config = {
        "sample_size": image_size // vae_scale_factor,
747
        "in_channels": in_channels,
748
749
        "down_block_types": down_block_types,
        "block_out_channels": block_out_channels,
750
751
752
753
754
755
756
757
758
759
760
        "layers_per_block": unet_params["num_res_blocks"],
        "cross_attention_dim": context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "addition_embed_type": addition_embed_type,
        "addition_time_embed_dim": addition_time_embed_dim,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
        "transformer_layers_per_block": transformer_layers_per_block,
    }

761
762
763
764
765
766
767
768
    if upcast_attention is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        config["upcast_attention"] = upcast_attention

769
770
771
772
773
774
775
    if "disable_self_attentions" in unet_params:
        config["only_cross_attention"] = unet_params["disable_self_attentions"]

    if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int):
        config["num_class_embeds"] = unet_params["num_classes"]

    config["out_channels"] = unet_params["out_channels"]
776
    config["up_block_types"] = up_block_types
777
778
779
780

    return config


781
782
783
784
785
786
787
788
789
790
def create_controlnet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, **kwargs):
    if image_size is not None:
        deprecation_message = (
            "Configuring ControlNetModel with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

791
    unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
792
    diffusers_unet_config = create_unet_diffusers_config_from_ldm(original_config, image_size=image_size)
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

    controlnet_config = {
        "conditioning_channels": unet_params["hint_channels"],
        "in_channels": diffusers_unet_config["in_channels"],
        "down_block_types": diffusers_unet_config["down_block_types"],
        "block_out_channels": diffusers_unet_config["block_out_channels"],
        "layers_per_block": diffusers_unet_config["layers_per_block"],
        "cross_attention_dim": diffusers_unet_config["cross_attention_dim"],
        "attention_head_dim": diffusers_unet_config["attention_head_dim"],
        "use_linear_projection": diffusers_unet_config["use_linear_projection"],
        "class_embed_type": diffusers_unet_config["class_embed_type"],
        "addition_embed_type": diffusers_unet_config["addition_embed_type"],
        "addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"],
        "projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"],
        "transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"],
    }

    return controlnet_config


813
def create_vae_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, scaling_factor=None):
814
815
816
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
    if image_size is not None:
        deprecation_message = (
            "Configuring AutoencoderKL with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

    if "edm_mean" in checkpoint and "edm_std" in checkpoint:
        latents_mean = checkpoint["edm_mean"]
        latents_std = checkpoint["edm_std"]
    else:
        latents_mean = None
        latents_std = None

833
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
834
835
    if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None):
        scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR
836

837
    elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]):
838
        scaling_factor = original_config["model"]["params"]["scale_factor"]
839

840
841
    elif scaling_factor is None:
        scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR
842
843
844
845
846
847
848
849
850

    block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params["in_channels"],
        "out_channels": vae_params["out_ch"],
851
852
853
        "down_block_types": down_block_types,
        "up_block_types": up_block_types,
        "block_out_channels": block_out_channels,
854
855
856
857
        "latent_channels": vae_params["z_channels"],
        "layers_per_block": vae_params["num_res_blocks"],
        "scaling_factor": scaling_factor,
    }
858
859
    if latents_mean is not None and latents_std is not None:
        config.update({"latents_mean": latents_mean, "latents_std": latents_std})
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

    return config


def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None):
    for ldm_key in ldm_keys:
        diffusers_key = (
            ldm_key.replace("in_layers.0", "norm1")
            .replace("in_layers.2", "conv1")
            .replace("out_layers.0", "norm2")
            .replace("out_layers.3", "conv2")
            .replace("emb_layers.1", "time_emb_proj")
            .replace("skip_connection", "conv_shortcut")
        )
        if mapping:
            diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"])
876
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)
877
878
879
880
881


def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in ldm_keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"])
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut")
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = (
            ldm_key.replace(mapping["old"], mapping["new"])
            .replace("norm.weight", "group_norm.weight")
            .replace("norm.bias", "group_norm.bias")
            .replace("q.weight", "to_q.weight")
            .replace("q.bias", "to_q.bias")
            .replace("k.weight", "to_k.weight")
            .replace("k.bias", "to_k.bias")
            .replace("v.weight", "to_v.weight")
            .replace("v.bias", "to_v.bias")
            .replace("proj_out.weight", "to_out.0.weight")
            .replace("proj_out.bias", "to_out.0.bias")
        )
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)

        # proj_attn.weight has to be converted from conv 1D to linear
        shape = new_checkpoint[diffusers_key].shape

        if len(shape) == 3:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0]
        elif len(shape) == 4:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0]


def convert_stable_cascade_unet_single_file_to_diffusers(checkpoint, **kwargs):
    is_stage_c = "clip_txt_mapper.weight" in checkpoint

    if is_stage_c:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]
    else:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            # rename clip_mapper to clip_txt_pooled_mapper
            elif key.endswith("clip_mapper.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights
            elif key.endswith("clip_mapper.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]

    return state_dict
971
972


973
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False, **kwargs):
974
975
976
977
978
979
980
981
982
983
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())
    unet_key = LDM_UNET_KEY

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
984
985
        logger.warning("Checkpoint has both EMA and non-EMA weights.")
        logger.warning(
986
987
988
989
990
991
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
992
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(flat_ema_key)
993
994
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
995
            logger.warning(
996
997
998
999
1000
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )
        for key in keys:
            if key.startswith(unet_key):
1001
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(key)
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

    new_checkpoint = {}
    ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"]
    for diffusers_key, ldm_key in ldm_unet_keys.items():
        if ldm_key not in unet_state_dict:
            continue
        new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]):
        class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"]
        for diffusers_key, ldm_key in class_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"):
        addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"]
        for diffusers_key, ldm_key in addition_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    # Relevant to StableDiffusionUpscalePipeline
    if "num_class_embeds" in config:
        if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
            new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
1062
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.get(
1063
1064
                f"input_blocks.{i}.0.op.weight"
            )
1065
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.get(
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # Mid blocks
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

    # Up Blocks
    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)

        resnets = [
            key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        attentions = [
            key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key
        ]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

        if f"output_blocks.{i}.1.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.bias"
            ]
        if f"output_blocks.{i}.2.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.bias"
            ]

    return new_checkpoint


def convert_controlnet_checkpoint(
    checkpoint,
    config,
1143
    **kwargs,
1144
):
1145
1146
1147
    # Return checkpoint if it's already been converted
    if "time_embedding.linear_1.weight" in checkpoint:
        return checkpoint
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
    # Some controlnet ckpt files are distributed independently from the rest of the
    # model components i.e. https://huggingface.co/thibaud/controlnet-sd21/
    if "time_embed.0.weight" in checkpoint:
        controlnet_state_dict = checkpoint

    else:
        controlnet_state_dict = {}
        keys = list(checkpoint.keys())
        controlnet_key = LDM_CONTROLNET_KEY
        for key in keys:
            if key.startswith(controlnet_key):
1159
                controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.get(key)
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

    new_checkpoint = {}
    ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"]
    for diffusers_key, ldm_key in ldm_controlnet_keys.items():
        if ldm_key not in controlnet_state_dict:
            continue
        new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer}
    )
    input_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            controlnet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict:
1193
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.get(
1194
1195
                f"input_blocks.{i}.0.op.weight"
            )
1196
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.get(
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                controlnet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # controlnet down blocks
    for i in range(num_input_blocks):
1211
1212
        new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.get(f"zero_convs.{i}.0.weight")
        new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.get(f"zero_convs.{i}.0.bias")
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer}
    )
    middle_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    # Mid blocks
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1240
1241

    # mid block
1242
1243
    new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.get("middle_block_out.0.weight")
    new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.get("middle_block_out.0.bias")
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

    # controlnet cond embedding blocks
    cond_embedding_blocks = {
        ".".join(layer.split(".")[:2])
        for layer in controlnet_state_dict
        if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer)
    }
    num_cond_embedding_blocks = len(cond_embedding_blocks)

    for idx in range(1, num_cond_embedding_blocks + 1):
        diffusers_idx = idx - 1
        cond_block_id = 2 * idx

1257
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.get(
1258
1259
            f"input_hint_block.{cond_block_id}.weight"
        )
1260
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.get(
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
            f"input_hint_block.{cond_block_id}.bias"
        )

    return new_checkpoint


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    # remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys
    vae_state_dict = {}
    keys = list(checkpoint.keys())
1272
1273
1274
1275
1276
    vae_key = ""
    for ldm_vae_key in LDM_VAE_KEYS:
        if any(k.startswith(ldm_vae_key) for k in keys):
            vae_key = ldm_vae_key

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}
    vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"]
    for diffusers_key, ldm_key in vae_diffusers_ldm_map.items():
        if ldm_key not in vae_state_dict:
            continue
        new_checkpoint[diffusers_key] = vae_state_dict[ldm_key]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(config["down_block_types"])
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"},
        )
        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
1303
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.get(
1304
1305
                f"encoder.down.{i}.downsample.conv.weight"
            )
1306
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.get(
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
                f"encoder.down.{i}.downsample.conv.bias"
            )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(config["up_block_types"])
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"},
        )
        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )
    conv_attn_to_linear(new_checkpoint)

    return new_checkpoint


1371
def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None):
1372
1373
1374
    keys = list(checkpoint.keys())
    text_model_dict = {}

1375
1376
1377
1378
    remove_prefixes = []
    remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE)
    if remove_prefix:
        remove_prefixes.append(remove_prefix)
1379
1380
1381
1382
1383

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
1384
                text_model_dict[diffusers_key] = checkpoint.get(key)
1385

1386
    return text_model_dict
1387

1388

1389
1390
def convert_open_clip_checkpoint(
    text_model,
1391
1392
1393
1394
1395
    checkpoint,
    prefix="cond_stage_model.model.",
):
    text_model_dict = {}
    text_proj_key = prefix + "text_projection"
1396
1397
1398
1399
1400
1401
1402
1403

    if text_proj_key in checkpoint:
        text_proj_dim = int(checkpoint[text_proj_key].shape[0])
    elif hasattr(text_model.config, "projection_dim"):
        text_proj_dim = text_model.config.projection_dim
    else:
        text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
    keys = list(checkpoint.keys())
    keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE

    openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"]
    for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items():
        ldm_key = prefix + ldm_key
        if ldm_key not in checkpoint:
            continue
        if ldm_key in keys_to_ignore:
            continue
        if ldm_key.endswith("text_projection"):
            text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous()
        else:
            text_model_dict[diffusers_key] = checkpoint[ldm_key]

    for key in keys:
        if key in keys_to_ignore:
            continue

        if not key.startswith(prefix + "transformer."):
            continue

        diffusers_key = key.replace(prefix + "transformer.", "")
        transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"]
        for new_key, old_key in transformer_diffusers_to_ldm_map.items():
            diffusers_key = (
                diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "")
            )

        if key.endswith(".in_proj_weight"):
1434
            weight_value = checkpoint.get(key)
1435

1436
1437
1438
1439
1440
            text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.weight"] = (
                weight_value[text_proj_dim : text_proj_dim * 2, :].clone().detach()
            )
            text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :].clone().detach()
1441
1442

        elif key.endswith(".in_proj_bias"):
1443
1444
1445
1446
            weight_value = checkpoint.get(key)
            text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.bias"] = (
                weight_value[text_proj_dim : text_proj_dim * 2].clone().detach()
1447
            )
1448
1449
1450
            text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :].clone().detach()
        else:
            text_model_dict[diffusers_key] = checkpoint.get(key)
1451

1452
    return text_model_dict
1453
1454


1455
1456
def create_diffusers_clip_model_from_ldm(
    cls,
1457
    checkpoint,
1458
1459
    subfolder="",
    config=None,
1460
    torch_dtype=None,
1461
1462
    local_files_only=None,
    is_legacy_loading=False,
1463
):
1464
1465
1466
1467
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)
1468

1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
    # For backwards compatibility
    # Older versions of `from_single_file` expected CLIP configs to be placed in their original transformers model repo
    # in the cache_dir, rather than in a subfolder of the Diffusers model
    if is_legacy_loading:
        logger.warning(
            (
                "Detected legacy CLIP loading behavior. Please run `from_single_file` with `local_files_only=False once to update "
                "the local cache directory with the necessary CLIP model config files. "
                "Attempting to load CLIP model from legacy cache directory."
            )
        )
1480

1481
1482
1483
1484
        if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
            clip_config = "openai/clip-vit-large-patch14"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1485

1486
1487
1488
1489
        elif is_open_clip_model(checkpoint):
            clip_config = "stabilityai/stable-diffusion-2"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = "text_encoder"
1490

1491
1492
1493
1494
        else:
            clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1495

1496
    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
1497
1498
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
1499
        model = cls(model_config)
1500

1501
    position_embedding_dim = model.text_model.embeddings.position_embedding.weight.shape[-1]
1502

1503
1504
    if is_clip_model(checkpoint):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1505

1506
1507
1508
1509
1510
    elif (
        is_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1511

1512
1513
1514
1515
1516
1517
1518
    elif (
        is_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_l.transformer.")
        diffusers_format_checkpoint["text_projection.weight"] = torch.eye(position_embedding_dim)

1519
1520
1521
    elif is_open_clip_model(checkpoint):
        prefix = "cond_stage_model.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1522

1523
1524
1525
1526
1527
1528
    elif (
        is_open_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        prefix = "conditioner.embedders.1.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1529

1530
1531
1532
    elif is_open_clip_sdxl_refiner_model(checkpoint):
        prefix = "conditioner.embedders.0.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1533

1534
1535
1536
1537
1538
    elif (
        is_open_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_g.transformer.")
Dhruv Nair's avatar
Dhruv Nair committed
1539

1540
    else:
1541
        raise ValueError("The provided checkpoint does not seem to contain a valid CLIP model.")
1542
1543

    if is_accelerate_available():
1544
        unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
1545
1546
    else:
        _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)
1547

1548
1549
1550
    if model._keys_to_ignore_on_load_unexpected is not None:
        for pat in model._keys_to_ignore_on_load_unexpected:
            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
1551

1552
1553
1554
1555
    if len(unexpected_keys) > 0:
        logger.warning(
            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
        )
1556

1557
    if torch_dtype is not None:
1558
        model.to(torch_dtype)
1559

1560
    model.eval()
1561

1562
    return model
1563

1564
1565
1566

def _legacy_load_scheduler(
    cls,
1567
    checkpoint,
1568
1569
1570
    component_name,
    original_config=None,
    **kwargs,
1571
):
1572
1573
    scheduler_type = kwargs.get("scheduler_type", None)
    prediction_type = kwargs.get("prediction_type", None)
1574

1575
1576
    if scheduler_type is not None:
        deprecation_message = (
1577
1578
1579
1580
1581
            "Please pass an instance of a Scheduler object directly to the `scheduler` argument in `from_single_file`\n\n"
            "Example:\n\n"
            "from diffusers import StableDiffusionPipeline, DDIMScheduler\n\n"
            "scheduler = DDIMScheduler()\n"
            "pipe = StableDiffusionPipeline.from_single_file(<checkpoint path>, scheduler=scheduler)\n"
1582
1583
        )
        deprecate("scheduler_type", "1.0.0", deprecation_message)
1584

1585
1586
    if prediction_type is not None:
        deprecation_message = (
1587
1588
1589
1590
1591
1592
            "Please configure an instance of a Scheduler with the appropriate `prediction_type` and "
            "pass the object directly to the `scheduler` argument in `from_single_file`.\n\n"
            "Example:\n\n"
            "from diffusers import StableDiffusionPipeline, DDIMScheduler\n\n"
            'scheduler = DDIMScheduler(prediction_type="v_prediction")\n'
            "pipe = StableDiffusionPipeline.from_single_file(<checkpoint path>, scheduler=scheduler)\n"
1593
1594
        )
        deprecate("prediction_type", "1.0.0", deprecation_message)
1595

1596
1597
    scheduler_config = SCHEDULER_DEFAULT_CONFIG
    model_type = infer_diffusers_model_type(checkpoint=checkpoint)
1598
1599
1600

    global_step = checkpoint["global_step"] if "global_step" in checkpoint else None

1601
1602
1603
1604
1605
    if original_config:
        num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", 1000)
    else:
        num_train_timesteps = 1000

1606
1607
    scheduler_config["num_train_timesteps"] = num_train_timesteps

1608
    if model_type == "v2":
1609
        if prediction_type is None:
1610
            # NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"` # as it relies on a brittle global step parameter here
1611
1612
1613
1614
1615
1616
1617
            prediction_type = "epsilon" if global_step == 875000 else "v_prediction"

    else:
        prediction_type = prediction_type or "epsilon"

    scheduler_config["prediction_type"] = prediction_type

1618
    if model_type in ["xl_base", "xl_refiner"]:
1619
        scheduler_type = "euler"
1620
    elif model_type == "playground":
1621
        scheduler_type = "edm_dpm_solver_multistep"
1622
    else:
1623
1624
1625
1626
1627
1628
1629
1630
        if original_config:
            beta_start = original_config["model"]["params"].get("linear_start")
            beta_end = original_config["model"]["params"].get("linear_end")

        else:
            beta_start = 0.02
            beta_end = 0.085

1631
1632
1633
1634
1635
1636
        scheduler_config["beta_start"] = beta_start
        scheduler_config["beta_end"] = beta_end
        scheduler_config["beta_schedule"] = "scaled_linear"
        scheduler_config["clip_sample"] = False
        scheduler_config["set_alpha_to_one"] = False

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
    # to deal with an edge case StableDiffusionUpscale pipeline has two schedulers
    if component_name == "low_res_scheduler":
        return cls.from_config(
            {
                "beta_end": 0.02,
                "beta_schedule": "scaled_linear",
                "beta_start": 0.0001,
                "clip_sample": True,
                "num_train_timesteps": 1000,
                "prediction_type": "epsilon",
                "trained_betas": None,
                "variance_type": "fixed_small",
            }
        )

    if scheduler_type is None:
        return cls.from_config(scheduler_config)

    elif scheduler_type == "pndm":
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
        scheduler_config["skip_prk_steps"] = True
        scheduler = PNDMScheduler.from_config(scheduler_config)

    elif scheduler_type == "lms":
        scheduler = LMSDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "heun":
        scheduler = HeunDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler":
        scheduler = EulerDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler-ancestral":
        scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "dpm":
        scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)

    elif scheduler_type == "ddim":
        scheduler = DDIMScheduler.from_config(scheduler_config)

1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
    elif scheduler_type == "edm_dpm_solver_multistep":
        scheduler_config = {
            "algorithm_type": "dpmsolver++",
            "dynamic_thresholding_ratio": 0.995,
            "euler_at_final": False,
            "final_sigmas_type": "zero",
            "lower_order_final": True,
            "num_train_timesteps": 1000,
            "prediction_type": "epsilon",
            "rho": 7.0,
            "sample_max_value": 1.0,
            "sigma_data": 0.5,
            "sigma_max": 80.0,
            "sigma_min": 0.002,
            "solver_order": 2,
            "solver_type": "midpoint",
            "thresholding": False,
        }
        scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config)

1697
1698
1699
    else:
        raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")

1700
    return scheduler
1701
1702


1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
def _legacy_load_clip_tokenizer(cls, checkpoint, config=None, local_files_only=False):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
        clip_config = "openai/clip-vit-large-patch14"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    elif is_open_clip_model(checkpoint):
        clip_config = "stabilityai/stable-diffusion-2"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = "tokenizer"

    else:
        clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    tokenizer = cls.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)

    return tokenizer


def _legacy_load_safety_checker(local_files_only, torch_dtype):
    # Support for loading safety checker components using the deprecated
    # `load_safety_checker` argument.

    from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

    feature_extractor = AutoImageProcessor.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )
    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )

    return {"safety_checker": safety_checker, "feature_extractor": feature_extractor}
Dhruv Nair's avatar
Dhruv Nair committed
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752


# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight, dim):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight


Dhruv Nair's avatar
Dhruv Nair committed
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
def get_attn2_layers(state_dict):
    attn2_layers = []
    for key in state_dict.keys():
        if "attn2." in key:
            # Extract the layer number from the key
            layer_num = int(key.split(".")[1])
            attn2_layers.append(layer_num)

    return tuple(sorted(set(attn2_layers)))


def get_caption_projection_dim(state_dict):
    caption_projection_dim = state_dict["context_embedder.weight"].shape[0]
    return caption_projection_dim


Dhruv Nair's avatar
Dhruv Nair committed
1769
1770
1771
1772
1773
1774
1775
1776
def convert_sd3_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "joint_blocks" in k))[-1] + 1  # noqa: C401
Dhruv Nair's avatar
Dhruv Nair committed
1777
1778
1779
1780
    dual_attention_layers = get_attn2_layers(checkpoint)

    caption_projection_dim = get_caption_projection_dim(checkpoint)
    has_qk_norm = any("ln_q" in key for key in checkpoint.keys())
Dhruv Nair's avatar
Dhruv Nair committed
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836

    # Positional and patch embeddings.
    converted_state_dict["pos_embed.pos_embed"] = checkpoint.pop("pos_embed")
    converted_state_dict["pos_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight")
    converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias")

    # Timestep embeddings.
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias")

    # Context projections.
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("context_embedder.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("context_embedder.bias")

    # Pooled context projection.
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("y_embedder.mlp.0.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("y_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop("y_embedder.mlp.2.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("y_embedder.mlp.2.bias")

    # Transformer blocks 🎸.
    for i in range(num_layers):
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
        )
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
        )

        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])

        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])

Dhruv Nair's avatar
Dhruv Nair committed
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
        # qk norm
        if has_qk_norm:
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_q.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_k.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn.ln_k.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_q.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_k.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.ln_k.weight"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
        # output projections.
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.bias"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
        if i in dual_attention_layers:
            # Q, K, V
            sample_q2, sample_k2, sample_v2 = torch.chunk(
                checkpoint.pop(f"joint_blocks.{i}.x_block.attn2.qkv.weight"), 3, dim=0
            )
            sample_q2_bias, sample_k2_bias, sample_v2_bias = torch.chunk(
                checkpoint.pop(f"joint_blocks.{i}.x_block.attn2.qkv.bias"), 3, dim=0
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = torch.cat([sample_q2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = torch.cat([sample_q2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = torch.cat([sample_k2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = torch.cat([sample_k2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = torch.cat([sample_v2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = torch.cat([sample_v2_bias])

            # qk norm
            if has_qk_norm:
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_q.weight"] = checkpoint.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_q.weight"
                )
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_k.weight"] = checkpoint.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_k.weight"
                )

            # output projections.
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.bias"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
        # norms.
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
            )
        else:
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
                dim=caption_projection_dim,
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
                dim=caption_projection_dim,
            )

        # ffs.
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.bias"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.bias"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.bias"
            )

    # Final blocks.
    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
    )

    return converted_state_dict


def is_t5_in_single_file(checkpoint):
    if "text_encoders.t5xxl.transformer.shared.weight" in checkpoint:
        return True

    return False


def convert_sd3_t5_checkpoint_to_diffusers(checkpoint):
    keys = list(checkpoint.keys())
    text_model_dict = {}

1974
    remove_prefixes = ["text_encoders.t5xxl.transformer."]
Dhruv Nair's avatar
Dhruv Nair committed
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
                text_model_dict[diffusers_key] = checkpoint.get(key)

    return text_model_dict


def create_diffusers_t5_model_from_checkpoint(
    cls,
    checkpoint,
    subfolder="",
    config=None,
    torch_dtype=None,
    local_files_only=None,
):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        model = cls(model_config)

    diffusers_format_checkpoint = convert_sd3_t5_checkpoint_to_diffusers(checkpoint)

    if is_accelerate_available():
        unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
        if model._keys_to_ignore_on_load_unexpected is not None:
            for pat in model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
            )

    else:
        model.load_state_dict(diffusers_format_checkpoint)
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

    use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (torch_dtype == torch.float16)
    if use_keep_in_fp32_modules:
        keep_in_fp32_modules = model._keep_in_fp32_modules
    else:
        keep_in_fp32_modules = []

    if keep_in_fp32_modules is not None:
        for name, param in model.named_parameters():
            if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
                # param = param.to(torch.float32) does not work here as only in the local scope.
                param.data = param.data.to(torch.float32)

2031
    return model
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050


def convert_animatediff_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    for k, v in checkpoint.items():
        if "pos_encoder" in k:
            continue

        else:
            converted_state_dict[
                k.replace(".norms.0", ".norm1")
                .replace(".norms.1", ".norm2")
                .replace(".ff_norm", ".norm3")
                .replace(".attention_blocks.0", ".attn1")
                .replace(".attention_blocks.1", ".attn2")
                .replace(".temporal_transformer", "")
            ] = v

    return converted_state_dict
2051
2052
2053
2054


def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
2055
2056
2057
2058
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1  # noqa: C401
    num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1  # noqa: C401
    mlp_ratio = 4.0
    inner_dim = 3072

    # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
    # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    ## time_text_embed.timestep_embedder <-  time_in
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "time_in.in_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("time_in.in_layer.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "time_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("time_in.out_layer.bias")

    ## time_text_embed.text_embedder <- vector_in
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("vector_in.in_layer.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("vector_in.in_layer.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop(
        "vector_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("vector_in.out_layer.bias")

    # guidance
    has_guidance = any("guidance" in k for k in checkpoint)
    if has_guidance:
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = checkpoint.pop(
            "guidance_in.in_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = checkpoint.pop(
            "guidance_in.in_layer.bias"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = checkpoint.pop(
            "guidance_in.out_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = checkpoint.pop(
            "guidance_in.out_layer.bias"
        )

    # context_embedder
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")

    # x_embedder
    converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
    converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        # norms.
        ## norm1
        converted_state_dict[f"{block_prefix}norm1.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.bias"
        )
        ## norm1_context
        converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.bias"
        )
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
        # qk_norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.key_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
        )
        # ff img_mlp
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.bias"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.bias"
        )

    # single transfomer blocks
    for i in range(num_single_layers):
        block_prefix = f"single_transformer_blocks.{i}."
        # norm.linear  <- single_blocks.0.modulation.lin
        converted_state_dict[f"{block_prefix}norm.linear.weight"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm.linear.bias"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.bias"
        )
        # Q, K, V, mlp
        mlp_hidden_dim = int(inner_dim * mlp_ratio)
        split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
        q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
        q_bias, k_bias, v_bias, mlp_bias = torch.split(
            checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
        converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
        converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
        # qk norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.key_norm.scale"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
        converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")

    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight")
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias")
    )

    return converted_state_dict
2247
2248


Aryan's avatar
Aryan committed
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
def convert_ltx_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {
        key: checkpoint.pop(key) for key in list(checkpoint.keys()) if "model.diffusion_model." in key
    }

    TRANSFORMER_KEYS_RENAME_DICT = {
        "model.diffusion_model.": "",
        "patchify_proj": "proj_in",
        "adaln_single": "time_embed",
        "q_norm": "norm_q",
        "k_norm": "norm_k",
    }

    TRANSFORMER_SPECIAL_KEYS_REMAP = {}

    for key in list(converted_state_dict.keys()):
        new_key = key
        for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    for key in list(converted_state_dict.keys()):
        for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, converted_state_dict)

    return converted_state_dict


def convert_ltx_vae_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys()) if "vae." in key}

    def remove_keys_(key: str, state_dict):
        state_dict.pop(key)

    VAE_KEYS_RENAME_DICT = {
        # common
        "vae.": "",
        # decoder
        "up_blocks.0": "mid_block",
        "up_blocks.1": "up_blocks.0",
        "up_blocks.2": "up_blocks.1.upsamplers.0",
        "up_blocks.3": "up_blocks.1",
        "up_blocks.4": "up_blocks.2.conv_in",
        "up_blocks.5": "up_blocks.2.upsamplers.0",
        "up_blocks.6": "up_blocks.2",
        "up_blocks.7": "up_blocks.3.conv_in",
        "up_blocks.8": "up_blocks.3.upsamplers.0",
        "up_blocks.9": "up_blocks.3",
        # encoder
        "down_blocks.0": "down_blocks.0",
        "down_blocks.1": "down_blocks.0.downsamplers.0",
        "down_blocks.2": "down_blocks.0.conv_out",
        "down_blocks.3": "down_blocks.1",
        "down_blocks.4": "down_blocks.1.downsamplers.0",
        "down_blocks.5": "down_blocks.1.conv_out",
        "down_blocks.6": "down_blocks.2",
        "down_blocks.7": "down_blocks.2.downsamplers.0",
        "down_blocks.8": "down_blocks.3",
        "down_blocks.9": "mid_block",
        # common
        "conv_shortcut": "conv_shortcut.conv",
        "res_blocks": "resnets",
        "norm3.norm": "norm3",
        "per_channel_statistics.mean-of-means": "latents_mean",
        "per_channel_statistics.std-of-means": "latents_std",
    }

    VAE_SPECIAL_KEYS_REMAP = {
        "per_channel_statistics.channel": remove_keys_,
        "per_channel_statistics.mean-of-means": remove_keys_,
        "per_channel_statistics.mean-of-stds": remove_keys_,
    }

    for key in list(converted_state_dict.keys()):
        new_key = key
        for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    for key in list(converted_state_dict.keys()):
        for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, converted_state_dict)

    return converted_state_dict


2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
def convert_autoencoder_dc_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {key: checkpoint.pop(key) for key in list(checkpoint.keys())}

    def remap_qkv_(key: str, state_dict):
        qkv = state_dict.pop(key)
        q, k, v = torch.chunk(qkv, 3, dim=0)
        parent_module, _, _ = key.rpartition(".qkv.conv.weight")
        state_dict[f"{parent_module}.to_q.weight"] = q.squeeze()
        state_dict[f"{parent_module}.to_k.weight"] = k.squeeze()
        state_dict[f"{parent_module}.to_v.weight"] = v.squeeze()

    def remap_proj_conv_(key: str, state_dict):
        parent_module, _, _ = key.rpartition(".proj.conv.weight")
        state_dict[f"{parent_module}.to_out.weight"] = state_dict.pop(key).squeeze()

    AE_KEYS_RENAME_DICT = {
        # common
        "main.": "",
        "op_list.": "",
        "context_module": "attn",
        "local_module": "conv_out",
        # NOTE: The below two lines work because scales in the available configs only have a tuple length of 1
        # If there were more scales, there would be more layers, so a loop would be better to handle this
        "aggreg.0.0": "to_qkv_multiscale.0.proj_in",
        "aggreg.0.1": "to_qkv_multiscale.0.proj_out",
        "depth_conv.conv": "conv_depth",
        "inverted_conv.conv": "conv_inverted",
        "point_conv.conv": "conv_point",
        "point_conv.norm": "norm",
        "conv.conv.": "conv.",
        "conv1.conv": "conv1",
        "conv2.conv": "conv2",
        "conv2.norm": "norm",
        "proj.norm": "norm_out",
        # encoder
        "encoder.project_in.conv": "encoder.conv_in",
        "encoder.project_out.0.conv": "encoder.conv_out",
        "encoder.stages": "encoder.down_blocks",
        # decoder
        "decoder.project_in.conv": "decoder.conv_in",
        "decoder.project_out.0": "decoder.norm_out",
        "decoder.project_out.2.conv": "decoder.conv_out",
        "decoder.stages": "decoder.up_blocks",
    }

    AE_F32C32_F64C128_F128C512_KEYS = {
        "encoder.project_in.conv": "encoder.conv_in.conv",
        "decoder.project_out.2.conv": "decoder.conv_out.conv",
    }

    AE_SPECIAL_KEYS_REMAP = {
        "qkv.conv.weight": remap_qkv_,
        "proj.conv.weight": remap_proj_conv_,
    }
    if "encoder.project_in.conv.bias" not in converted_state_dict:
        AE_KEYS_RENAME_DICT.update(AE_F32C32_F64C128_F128C512_KEYS)

    for key in list(converted_state_dict.keys()):
        new_key = key[:]
        for replace_key, rename_key in AE_KEYS_RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        converted_state_dict[new_key] = converted_state_dict.pop(key)

    for key in list(converted_state_dict.keys()):
        for special_key, handler_fn_inplace in AE_SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, converted_state_dict)

    return converted_state_dict