single_file_utils.py 86.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Conversion script for the Stable Diffusion checkpoints."""
16
17
18
19
20
21
22
23

import os
import re
from contextlib import nullcontext
from io import BytesIO
from urllib.parse import urlparse

import requests
Dhruv Nair's avatar
Dhruv Nair committed
24
import torch
25
26
27
28
29
30
import yaml

from ..models.modeling_utils import load_state_dict
from ..schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
31
    EDMDPMSolverMultistepScheduler,
32
33
34
35
36
37
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
38
39
40
41
42
43
44
45
from ..utils import (
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    deprecate,
    is_accelerate_available,
    is_transformers_available,
    logging,
)
46
47
48
49
from ..utils.hub_utils import _get_model_file


if is_transformers_available():
50
    from transformers import AutoImageProcessor
51
52
53
54

if is_accelerate_available():
    from accelerate import init_empty_weights

55
56
    from ..models.modeling_utils import load_model_dict_into_meta

57
58
59
60
61
62
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

CHECKPOINT_KEY_NAMES = {
    "v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
    "xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias",
    "xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias",
63
64
65
66
    "upscale": "model.diffusion_model.input_blocks.10.0.skip_connection.bias",
    "controlnet": "control_model.time_embed.0.weight",
    "playground-v2-5": "edm_mean",
    "inpainting": "model.diffusion_model.input_blocks.0.0.weight",
67
    "clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
68
    "clip_sdxl": "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight",
Dhruv Nair's avatar
Dhruv Nair committed
69
    "clip_sd3": "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight",
70
71
72
    "open_clip": "cond_stage_model.model.token_embedding.weight",
    "open_clip_sdxl": "conditioner.embedders.1.model.positional_embedding",
    "open_clip_sdxl_refiner": "conditioner.embedders.0.model.text_projection",
Dhruv Nair's avatar
Dhruv Nair committed
73
    "open_clip_sd3": "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight",
74
75
    "stable_cascade_stage_b": "down_blocks.1.0.channelwise.0.weight",
    "stable_cascade_stage_c": "clip_txt_mapper.weight",
Dhruv Nair's avatar
Dhruv Nair committed
76
    "sd3": "model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias",
77
    "animatediff": "down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.pos_encoder.pe",
78
79
    "animatediff_v2": "mid_block.motion_modules.0.temporal_transformer.norm.bias",
    "animatediff_sdxl_beta": "up_blocks.2.motion_modules.0.temporal_transformer.norm.weight",
80
81
    "animatediff_scribble": "controlnet_cond_embedding.conv_in.weight",
    "animatediff_rgb": "controlnet_cond_embedding.weight",
82
    "flux": "double_blocks.0.img_attn.norm.key_norm.scale",
83
84
}

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
    "xl_base": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-base-1.0"},
    "xl_refiner": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-refiner-1.0"},
    "xl_inpaint": {"pretrained_model_name_or_path": "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"},
    "playground-v2-5": {"pretrained_model_name_or_path": "playgroundai/playground-v2.5-1024px-aesthetic"},
    "upscale": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-x4-upscaler"},
    "inpainting": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-inpainting"},
    "inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"},
    "controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"},
    "v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"},
    "v1": {"pretrained_model_name_or_path": "runwayml/stable-diffusion-v1-5"},
    "stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"},
    "stable_cascade_stage_b_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade",
        "subfolder": "decoder_lite",
    },
    "stable_cascade_stage_c": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior",
    },
    "stable_cascade_stage_c_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior_lite",
    },
Dhruv Nair's avatar
Dhruv Nair committed
109
110
111
    "sd3": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3-medium-diffusers",
    },
112
113
114
115
    "animatediff_v1": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5"},
    "animatediff_v2": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-2"},
    "animatediff_v3": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-3"},
    "animatediff_sdxl_beta": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-sdxl-beta"},
116
117
    "animatediff_scribble": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-scribble"},
    "animatediff_rgb": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-rgb"},
118
119
    "flux-dev": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-dev"},
    "flux-schnell": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-schnell"},
120
121
}

122
123
124
125
126
127
128
129
130
131
132
133
# Use to configure model sample size when original config is provided
DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP = {
    "xl_base": 1024,
    "xl_refiner": 1024,
    "xl_inpaint": 1024,
    "playground-v2-5": 1024,
    "upscale": 512,
    "inpainting": 512,
    "inpainting_v2": 512,
    "controlnet": 512,
    "v2": 768,
    "v1": 512,
134
135
136
}


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
DIFFUSERS_TO_LDM_MAPPING = {
    "unet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "conv_norm_out.weight": "out.0.weight",
            "conv_norm_out.bias": "out.0.bias",
            "conv_out.weight": "out.2.weight",
            "conv_out.bias": "out.2.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "controlnet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight",
            "controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias",
            "controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight",
            "controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "vae": {
        "encoder.conv_in.weight": "encoder.conv_in.weight",
        "encoder.conv_in.bias": "encoder.conv_in.bias",
        "encoder.conv_out.weight": "encoder.conv_out.weight",
        "encoder.conv_out.bias": "encoder.conv_out.bias",
        "encoder.conv_norm_out.weight": "encoder.norm_out.weight",
        "encoder.conv_norm_out.bias": "encoder.norm_out.bias",
        "decoder.conv_in.weight": "decoder.conv_in.weight",
        "decoder.conv_in.bias": "decoder.conv_in.bias",
        "decoder.conv_out.weight": "decoder.conv_out.weight",
        "decoder.conv_out.bias": "decoder.conv_out.bias",
        "decoder.conv_norm_out.weight": "decoder.norm_out.weight",
        "decoder.conv_norm_out.bias": "decoder.norm_out.bias",
        "quant_conv.weight": "quant_conv.weight",
        "quant_conv.bias": "quant_conv.bias",
        "post_quant_conv.weight": "post_quant_conv.weight",
        "post_quant_conv.bias": "post_quant_conv.bias",
    },
    "openclip": {
        "layers": {
            "text_model.embeddings.position_embedding.weight": "positional_embedding",
            "text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "text_model.final_layer_norm.weight": "ln_final.weight",
            "text_model.final_layer_norm.bias": "ln_final.bias",
            "text_projection.weight": "text_projection",
        },
        "transformer": {
            "text_model.encoder.layers.": "resblocks.",
            "layer_norm1": "ln_1",
            "layer_norm2": "ln_2",
            ".fc1.": ".c_fc.",
            ".fc2.": ".c_proj.",
            ".self_attn": ".attn",
            "transformer.text_model.final_layer_norm.": "ln_final.",
            "transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "transformer.text_model.embeddings.position_embedding.weight": "positional_embedding",
        },
    },
}

SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight",
    "cond_stage_model.model.text_projection",
]

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# To support legacy scheduler_type argument
SCHEDULER_DEFAULT_CONFIG = {
    "beta_schedule": "scaled_linear",
    "beta_start": 0.00085,
    "beta_end": 0.012,
    "interpolation_type": "linear",
    "num_train_timesteps": 1000,
    "prediction_type": "epsilon",
    "sample_max_value": 1.0,
    "set_alpha_to_one": False,
    "skip_prk_steps": True,
    "steps_offset": 1,
    "timestep_spacing": "leading",
}

LDM_VAE_KEY = "first_stage_model."
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215
PLAYGROUND_VAE_SCALING_FACTOR = 0.5
LDM_UNET_KEY = "model.diffusion_model."
LDM_CONTROLNET_KEY = "control_model."
Dhruv Nair's avatar
Dhruv Nair committed
266
267
268
269
LDM_CLIP_PREFIX_TO_REMOVE = [
    "cond_stage_model.transformer.",
    "conditioner.embedders.0.transformer.",
]
270
271
OPEN_CLIP_PREFIX = "conditioner.embedders.0.model."
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024
272
273
274
275

VALID_URL_PREFIXES = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]


276
277
278
279
280
281
282
283
284
285
286
287
288
289
class SingleFileComponentError(Exception):
    def __init__(self, message=None):
        self.message = message
        super().__init__(self.message)


def is_valid_url(url):
    result = urlparse(url)
    if result.scheme and result.netloc:
        return True

    return False


290
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path):
291
292
293
    if not is_valid_url(pretrained_model_name_or_path):
        raise ValueError("Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.")

294
295
296
297
298
299
300
    pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)"
    weights_name = None
    repo_id = (None,)
    for prefix in VALID_URL_PREFIXES:
        pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "")
    match = re.match(pattern, pretrained_model_name_or_path)
    if not match:
301
        logger.warning("Unable to identify the repo_id and weights_name from the provided URL.")
302
303
304
305
306
307
308
309
        return repo_id, weights_name

    repo_id = f"{match.group(1)}/{match.group(2)}"
    weights_name = match.group(3)

    return repo_id, weights_name


310
311
312
313
314
315
316
def _is_model_weights_in_cached_folder(cached_folder, name):
    pretrained_model_name_or_path = os.path.join(cached_folder, name)
    weights_exist = False

    for weights_name in [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME]:
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            weights_exist = True
317

318
    return weights_exist
319
320


321
def load_single_file_checkpoint(
322
323
324
325
326
327
328
    pretrained_model_link_or_path,
    force_download=False,
    proxies=None,
    token=None,
    cache_dir=None,
    local_files_only=None,
    revision=None,
329
330
):
    if os.path.isfile(pretrained_model_link_or_path):
331
332
        pretrained_model_link_or_path = pretrained_model_link_or_path

333
334
    else:
        repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path)
335
        pretrained_model_link_or_path = _get_model_file(
336
337
338
339
340
341
342
343
344
            repo_id,
            weights_name=weights_name,
            force_download=force_download,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
        )
345
346

    checkpoint = load_state_dict(pretrained_model_link_or_path)
347
348
349
350
351

    # some checkpoints contain the model state dict under a "state_dict" key
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

352
    return checkpoint
353
354


355
356
357
358
def fetch_original_config(original_config_file, local_files_only=False):
    if os.path.isfile(original_config_file):
        with open(original_config_file, "r") as fp:
            original_config_file = fp.read()
359

360
361
362
363
364
365
    elif is_valid_url(original_config_file):
        if local_files_only:
            raise ValueError(
                "`local_files_only` is set to True, but a URL was provided as `original_config_file`. "
                "Please provide a valid local file path."
            )
366

367
        original_config_file = BytesIO(requests.get(original_config_file).content)
368

369
370
    else:
        raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.")
371

372
    original_config = yaml.safe_load(original_config_file)
373

374
    return original_config
375
376


377
378
379
def is_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip"] in checkpoint:
        return True
380

381
    return False
382
383


384
385
386
def is_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sdxl"] in checkpoint:
        return True
387

388
    return False
389
390


Dhruv Nair's avatar
Dhruv Nair committed
391
392
393
394
395
396
397
def is_clip_sd3_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sd3"] in checkpoint:
        return True

    return False


398
399
400
def is_open_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip"] in checkpoint:
        return True
401

402
    return False
403
404


405
406
407
def is_open_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl"] in checkpoint:
        return True
408

409
    return False
410
411


Dhruv Nair's avatar
Dhruv Nair committed
412
def is_open_clip_sd3_model(checkpoint):
413
414
415
416
    if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint:
        return True

    return False
Dhruv Nair's avatar
Dhruv Nair committed
417
418


419
def is_open_clip_sdxl_refiner_model(checkpoint):
420
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl_refiner"] in checkpoint:
421
422
423
424
425
426
427
428
429
        return True

    return False


def is_clip_model_in_single_file(class_obj, checkpoint):
    is_clip_in_checkpoint = any(
        [
            is_clip_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
430
            is_clip_sd3_model(checkpoint),
431
432
433
            is_open_clip_model(checkpoint),
            is_open_clip_sdxl_model(checkpoint),
            is_open_clip_sdxl_refiner_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
434
            is_open_clip_sd3_model(checkpoint),
435
        ]
436
    )
437
438
439
440
441
442
    if (
        class_obj.__name__ == "CLIPTextModel" or class_obj.__name__ == "CLIPTextModelWithProjection"
    ) and is_clip_in_checkpoint:
        return True

    return False
443
444


445
446
447
448
449
450
451
def infer_diffusers_model_type(checkpoint):
    if (
        CHECKPOINT_KEY_NAMES["inpainting"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["inpainting"]].shape[1] == 9
    ):
        if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
            model_type = "inpainting_v2"
452
453
        elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
            model_type = "xl_inpaint"
454
        else:
455
            model_type = "inpainting"
456

457
458
    elif CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
        model_type = "v2"
459

460
461
    elif CHECKPOINT_KEY_NAMES["playground-v2-5"] in checkpoint:
        model_type = "playground-v2-5"
462

463
464
    elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
        model_type = "xl_base"
465

466
467
    elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint:
        model_type = "xl_refiner"
468

469
470
    elif CHECKPOINT_KEY_NAMES["upscale"] in checkpoint:
        model_type = "upscale"
471

472
473
    elif CHECKPOINT_KEY_NAMES["controlnet"] in checkpoint:
        model_type = "controlnet"
474

475
476
477
478
479
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 1536
    ):
        model_type = "stable_cascade_stage_c_lite"
480

481
482
483
484
485
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 2048
    ):
        model_type = "stable_cascade_stage_c"
486

487
488
489
490
491
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 576
    ):
        model_type = "stable_cascade_stage_b_lite"
492
493

    elif (
494
495
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 640
496
    ):
497
        model_type = "stable_cascade_stage_b"
498

Dhruv Nair's avatar
Dhruv Nair committed
499
500
501
    elif CHECKPOINT_KEY_NAMES["sd3"] in checkpoint:
        model_type = "sd3"

502
    elif CHECKPOINT_KEY_NAMES["animatediff"] in checkpoint:
503
504
505
506
507
508
509
        if CHECKPOINT_KEY_NAMES["animatediff_scribble"] in checkpoint:
            model_type = "animatediff_scribble"

        elif CHECKPOINT_KEY_NAMES["animatediff_rgb"] in checkpoint:
            model_type = "animatediff_rgb"

        elif CHECKPOINT_KEY_NAMES["animatediff_v2"] in checkpoint:
510
511
512
513
514
515
516
517
518
519
520
            model_type = "animatediff_v2"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff_sdxl_beta"]].shape[-1] == 320:
            model_type = "animatediff_sdxl_beta"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff"]].shape[1] == 24:
            model_type = "animatediff_v1"

        else:
            model_type = "animatediff_v3"

521
522
523
524
525
    elif CHECKPOINT_KEY_NAMES["flux"] in checkpoint:
        if "guidance_in.in_layer.bias" in checkpoint:
            model_type = "flux-dev"
        else:
            model_type = "flux-schnell"
526
    else:
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        model_type = "v1"

    return model_type


def fetch_diffusers_config(checkpoint):
    model_type = infer_diffusers_model_type(checkpoint)
    model_path = DIFFUSERS_DEFAULT_PIPELINE_PATHS[model_type]

    return model_path


def set_image_size(checkpoint, image_size=None):
    if image_size:
541
542
        return image_size

543
544
545
546
547
    model_type = infer_diffusers_model_type(checkpoint)
    image_size = DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP[model_type]

    return image_size

548
549
550
551
552
553
554
555
556
557
558
559
560
561

# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


562
563
564
def create_unet_diffusers_config_from_ldm(
    original_config, checkpoint, image_size=None, upcast_attention=None, num_in_channels=None
):
565
566
567
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
568
569
570
571
572
573
574
575
576
    if image_size is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `image_size` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

577
578
579
580
581
582
583
584
    if (
        "unet_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["unet_config"] is not None
    ):
        unet_params = original_config["model"]["params"]["unet_config"]["params"]
    else:
        unet_params = original_config["model"]["params"]["network_config"]["params"]

585
586
587
588
589
590
591
592
593
594
    if num_in_channels is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `num_in_channels` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        in_channels = num_in_channels
    else:
        in_channels = unet_params["in_channels"]

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
    block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
        up_block_types.append(block_type)
        resolution //= 2

    if unet_params["transformer_depth"] is not None:
        transformer_layers_per_block = (
            unet_params["transformer_depth"]
            if isinstance(unet_params["transformer_depth"], int)
            else list(unet_params["transformer_depth"])
        )
    else:
        transformer_layers_per_block = 1

    vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)

    head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
            head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]

    class_embed_type = None
    addition_embed_type = None
    addition_time_embed_dim = None
    projection_class_embeddings_input_dim = None
    context_dim = None

    if unet_params["context_dim"] is not None:
        context_dim = (
            unet_params["context_dim"]
            if isinstance(unet_params["context_dim"], int)
            else unet_params["context_dim"][0]
        )

    if "num_classes" in unet_params:
        if unet_params["num_classes"] == "sequential":
            if context_dim in [2048, 1280]:
                # SDXL
                addition_embed_type = "text_time"
                addition_time_embed_dim = 256
            else:
                class_embed_type = "projection"
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params["adm_in_channels"]

    config = {
        "sample_size": image_size // vae_scale_factor,
659
        "in_channels": in_channels,
660
661
        "down_block_types": down_block_types,
        "block_out_channels": block_out_channels,
662
663
664
665
666
667
668
669
670
671
672
        "layers_per_block": unet_params["num_res_blocks"],
        "cross_attention_dim": context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "addition_embed_type": addition_embed_type,
        "addition_time_embed_dim": addition_time_embed_dim,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
        "transformer_layers_per_block": transformer_layers_per_block,
    }

673
674
675
676
677
678
679
680
    if upcast_attention is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        config["upcast_attention"] = upcast_attention

681
682
683
684
685
686
687
    if "disable_self_attentions" in unet_params:
        config["only_cross_attention"] = unet_params["disable_self_attentions"]

    if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int):
        config["num_class_embeds"] = unet_params["num_classes"]

    config["out_channels"] = unet_params["out_channels"]
688
    config["up_block_types"] = up_block_types
689
690
691
692

    return config


693
694
695
696
697
698
699
700
701
702
def create_controlnet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, **kwargs):
    if image_size is not None:
        deprecation_message = (
            "Configuring ControlNetModel with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

703
    unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
704
    diffusers_unet_config = create_unet_diffusers_config_from_ldm(original_config, image_size=image_size)
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

    controlnet_config = {
        "conditioning_channels": unet_params["hint_channels"],
        "in_channels": diffusers_unet_config["in_channels"],
        "down_block_types": diffusers_unet_config["down_block_types"],
        "block_out_channels": diffusers_unet_config["block_out_channels"],
        "layers_per_block": diffusers_unet_config["layers_per_block"],
        "cross_attention_dim": diffusers_unet_config["cross_attention_dim"],
        "attention_head_dim": diffusers_unet_config["attention_head_dim"],
        "use_linear_projection": diffusers_unet_config["use_linear_projection"],
        "class_embed_type": diffusers_unet_config["class_embed_type"],
        "addition_embed_type": diffusers_unet_config["addition_embed_type"],
        "addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"],
        "projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"],
        "transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"],
    }

    return controlnet_config


725
def create_vae_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, scaling_factor=None):
726
727
728
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    if image_size is not None:
        deprecation_message = (
            "Configuring AutoencoderKL with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

    if "edm_mean" in checkpoint and "edm_std" in checkpoint:
        latents_mean = checkpoint["edm_mean"]
        latents_std = checkpoint["edm_std"]
    else:
        latents_mean = None
        latents_std = None

745
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
746
747
    if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None):
        scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR
748

749
    elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]):
750
        scaling_factor = original_config["model"]["params"]["scale_factor"]
751

752
753
    elif scaling_factor is None:
        scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR
754
755
756
757
758
759
760
761
762

    block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params["in_channels"],
        "out_channels": vae_params["out_ch"],
763
764
765
        "down_block_types": down_block_types,
        "up_block_types": up_block_types,
        "block_out_channels": block_out_channels,
766
767
768
769
        "latent_channels": vae_params["z_channels"],
        "layers_per_block": vae_params["num_res_blocks"],
        "scaling_factor": scaling_factor,
    }
770
771
    if latents_mean is not None and latents_std is not None:
        config.update({"latents_mean": latents_mean, "latents_std": latents_std})
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

    return config


def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None):
    for ldm_key in ldm_keys:
        diffusers_key = (
            ldm_key.replace("in_layers.0", "norm1")
            .replace("in_layers.2", "conv1")
            .replace("out_layers.0", "norm2")
            .replace("out_layers.3", "conv2")
            .replace("emb_layers.1", "time_emb_proj")
            .replace("skip_connection", "conv_shortcut")
        )
        if mapping:
            diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"])
788
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)
789
790
791
792
793


def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in ldm_keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"])
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut")
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = (
            ldm_key.replace(mapping["old"], mapping["new"])
            .replace("norm.weight", "group_norm.weight")
            .replace("norm.bias", "group_norm.bias")
            .replace("q.weight", "to_q.weight")
            .replace("q.bias", "to_q.bias")
            .replace("k.weight", "to_k.weight")
            .replace("k.bias", "to_k.bias")
            .replace("v.weight", "to_v.weight")
            .replace("v.bias", "to_v.bias")
            .replace("proj_out.weight", "to_out.0.weight")
            .replace("proj_out.bias", "to_out.0.bias")
        )
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)

        # proj_attn.weight has to be converted from conv 1D to linear
        shape = new_checkpoint[diffusers_key].shape

        if len(shape) == 3:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0]
        elif len(shape) == 4:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0]


def convert_stable_cascade_unet_single_file_to_diffusers(checkpoint, **kwargs):
    is_stage_c = "clip_txt_mapper.weight" in checkpoint

    if is_stage_c:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]
    else:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            # rename clip_mapper to clip_txt_pooled_mapper
            elif key.endswith("clip_mapper.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights
            elif key.endswith("clip_mapper.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]

    return state_dict
883
884


885
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False, **kwargs):
886
887
888
889
890
891
892
893
894
895
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())
    unet_key = LDM_UNET_KEY

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
896
897
        logger.warning("Checkpoint has both EMA and non-EMA weights.")
        logger.warning(
898
899
900
901
902
903
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
904
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(flat_ema_key)
905
906
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
907
            logger.warning(
908
909
910
911
912
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )
        for key in keys:
            if key.startswith(unet_key):
913
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(key)
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

    new_checkpoint = {}
    ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"]
    for diffusers_key, ldm_key in ldm_unet_keys.items():
        if ldm_key not in unet_state_dict:
            continue
        new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]):
        class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"]
        for diffusers_key, ldm_key in class_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"):
        addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"]
        for diffusers_key, ldm_key in addition_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    # Relevant to StableDiffusionUpscalePipeline
    if "num_class_embeds" in config:
        if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
            new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
974
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.get(
975
976
                f"input_blocks.{i}.0.op.weight"
            )
977
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.get(
978
979
980
981
982
983
984
985
986
987
988
989
990
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # Mid blocks
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

    # Up Blocks
    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)

        resnets = [
            key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        attentions = [
            key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key
        ]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

        if f"output_blocks.{i}.1.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.bias"
            ]
        if f"output_blocks.{i}.2.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.bias"
            ]

    return new_checkpoint


def convert_controlnet_checkpoint(
    checkpoint,
    config,
1055
    **kwargs,
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
):
    # Some controlnet ckpt files are distributed independently from the rest of the
    # model components i.e. https://huggingface.co/thibaud/controlnet-sd21/
    if "time_embed.0.weight" in checkpoint:
        controlnet_state_dict = checkpoint

    else:
        controlnet_state_dict = {}
        keys = list(checkpoint.keys())
        controlnet_key = LDM_CONTROLNET_KEY
        for key in keys:
            if key.startswith(controlnet_key):
1068
                controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.get(key)
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

    new_checkpoint = {}
    ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"]
    for diffusers_key, ldm_key in ldm_controlnet_keys.items():
        if ldm_key not in controlnet_state_dict:
            continue
        new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer}
    )
    input_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            controlnet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict:
1102
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.get(
1103
1104
                f"input_blocks.{i}.0.op.weight"
            )
1105
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.get(
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                controlnet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # controlnet down blocks
    for i in range(num_input_blocks):
1120
1121
        new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.get(f"zero_convs.{i}.0.weight")
        new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.get(f"zero_convs.{i}.0.bias")
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer}
    )
    middle_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
    # Mid blocks
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1149
1150

    # mid block
1151
1152
    new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.get("middle_block_out.0.weight")
    new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.get("middle_block_out.0.bias")
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

    # controlnet cond embedding blocks
    cond_embedding_blocks = {
        ".".join(layer.split(".")[:2])
        for layer in controlnet_state_dict
        if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer)
    }
    num_cond_embedding_blocks = len(cond_embedding_blocks)

    for idx in range(1, num_cond_embedding_blocks + 1):
        diffusers_idx = idx - 1
        cond_block_id = 2 * idx

1166
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.get(
1167
1168
            f"input_hint_block.{cond_block_id}.weight"
        )
1169
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.get(
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
            f"input_hint_block.{cond_block_id}.bias"
        )

    return new_checkpoint


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    # remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys
    vae_state_dict = {}
    keys = list(checkpoint.keys())
    vae_key = LDM_VAE_KEY if any(k.startswith(LDM_VAE_KEY) for k in keys) else ""
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}
    vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"]
    for diffusers_key, ldm_key in vae_diffusers_ldm_map.items():
        if ldm_key not in vae_state_dict:
            continue
        new_checkpoint[diffusers_key] = vae_state_dict[ldm_key]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(config["down_block_types"])
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"},
        )
        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
1208
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.get(
1209
1210
                f"encoder.down.{i}.downsample.conv.weight"
            )
1211
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.get(
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
                f"encoder.down.{i}.downsample.conv.bias"
            )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(config["up_block_types"])
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"},
        )
        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )
    conv_attn_to_linear(new_checkpoint)

    return new_checkpoint


1276
def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None):
1277
1278
1279
    keys = list(checkpoint.keys())
    text_model_dict = {}

1280
1281
1282
1283
    remove_prefixes = []
    remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE)
    if remove_prefix:
        remove_prefixes.append(remove_prefix)
1284
1285
1286
1287
1288

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
1289
                text_model_dict[diffusers_key] = checkpoint.get(key)
1290

1291
    return text_model_dict
1292

1293

1294
1295
def convert_open_clip_checkpoint(
    text_model,
1296
1297
1298
1299
1300
    checkpoint,
    prefix="cond_stage_model.model.",
):
    text_model_dict = {}
    text_proj_key = prefix + "text_projection"
1301
1302
1303
1304
1305
1306
1307
1308

    if text_proj_key in checkpoint:
        text_proj_dim = int(checkpoint[text_proj_key].shape[0])
    elif hasattr(text_model.config, "projection_dim"):
        text_proj_dim = text_model.config.projection_dim
    else:
        text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM

1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
    keys = list(checkpoint.keys())
    keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE

    openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"]
    for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items():
        ldm_key = prefix + ldm_key
        if ldm_key not in checkpoint:
            continue
        if ldm_key in keys_to_ignore:
            continue
        if ldm_key.endswith("text_projection"):
            text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous()
        else:
            text_model_dict[diffusers_key] = checkpoint[ldm_key]

    for key in keys:
        if key in keys_to_ignore:
            continue

        if not key.startswith(prefix + "transformer."):
            continue

        diffusers_key = key.replace(prefix + "transformer.", "")
        transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"]
        for new_key, old_key in transformer_diffusers_to_ldm_map.items():
            diffusers_key = (
                diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "")
            )

        if key.endswith(".in_proj_weight"):
1339
            weight_value = checkpoint.get(key)
1340

1341
1342
1343
1344
1345
            text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.weight"] = (
                weight_value[text_proj_dim : text_proj_dim * 2, :].clone().detach()
            )
            text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :].clone().detach()
1346
1347

        elif key.endswith(".in_proj_bias"):
1348
1349
1350
1351
            weight_value = checkpoint.get(key)
            text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.bias"] = (
                weight_value[text_proj_dim : text_proj_dim * 2].clone().detach()
1352
            )
1353
1354
1355
            text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :].clone().detach()
        else:
            text_model_dict[diffusers_key] = checkpoint.get(key)
1356

1357
    return text_model_dict
1358
1359


1360
1361
def create_diffusers_clip_model_from_ldm(
    cls,
1362
    checkpoint,
1363
1364
    subfolder="",
    config=None,
1365
    torch_dtype=None,
1366
1367
    local_files_only=None,
    is_legacy_loading=False,
1368
):
1369
1370
1371
1372
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)
1373

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
    # For backwards compatibility
    # Older versions of `from_single_file` expected CLIP configs to be placed in their original transformers model repo
    # in the cache_dir, rather than in a subfolder of the Diffusers model
    if is_legacy_loading:
        logger.warning(
            (
                "Detected legacy CLIP loading behavior. Please run `from_single_file` with `local_files_only=False once to update "
                "the local cache directory with the necessary CLIP model config files. "
                "Attempting to load CLIP model from legacy cache directory."
            )
        )
1385

1386
1387
1388
1389
        if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
            clip_config = "openai/clip-vit-large-patch14"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1390

1391
1392
1393
1394
        elif is_open_clip_model(checkpoint):
            clip_config = "stabilityai/stable-diffusion-2"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = "text_encoder"
1395

1396
1397
1398
1399
        else:
            clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1400

1401
    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
1402
1403
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
1404
        model = cls(model_config)
1405

1406
    position_embedding_dim = model.text_model.embeddings.position_embedding.weight.shape[-1]
1407

1408
1409
    if is_clip_model(checkpoint):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1410

1411
1412
1413
1414
1415
    elif (
        is_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1416

1417
1418
1419
1420
1421
1422
1423
    elif (
        is_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_l.transformer.")
        diffusers_format_checkpoint["text_projection.weight"] = torch.eye(position_embedding_dim)

1424
1425
1426
    elif is_open_clip_model(checkpoint):
        prefix = "cond_stage_model.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1427

1428
1429
1430
1431
1432
1433
    elif (
        is_open_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        prefix = "conditioner.embedders.1.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1434

1435
1436
1437
    elif is_open_clip_sdxl_refiner_model(checkpoint):
        prefix = "conditioner.embedders.0.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1438

1439
1440
1441
1442
1443
    elif (
        is_open_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_g.transformer.")
Dhruv Nair's avatar
Dhruv Nair committed
1444

1445
    else:
1446
        raise ValueError("The provided checkpoint does not seem to contain a valid CLIP model.")
1447
1448

    if is_accelerate_available():
1449
        unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
1450
1451
    else:
        _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)
1452

1453
1454
1455
    if model._keys_to_ignore_on_load_unexpected is not None:
        for pat in model._keys_to_ignore_on_load_unexpected:
            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
1456

1457
1458
1459
1460
    if len(unexpected_keys) > 0:
        logger.warning(
            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
        )
1461

1462
    if torch_dtype is not None:
1463
        model.to(torch_dtype)
1464

1465
    model.eval()
1466

1467
    return model
1468

1469
1470
1471

def _legacy_load_scheduler(
    cls,
1472
    checkpoint,
1473
1474
1475
    component_name,
    original_config=None,
    **kwargs,
1476
):
1477
1478
    scheduler_type = kwargs.get("scheduler_type", None)
    prediction_type = kwargs.get("prediction_type", None)
1479

1480
1481
1482
1483
1484
    if scheduler_type is not None:
        deprecation_message = (
            "Please pass an instance of a Scheduler object directly to the `scheduler` argument in `from_single_file`."
        )
        deprecate("scheduler_type", "1.0.0", deprecation_message)
1485

1486
1487
1488
1489
1490
1491
    if prediction_type is not None:
        deprecation_message = (
            "Please configure an instance of a Scheduler with the appropriate `prediction_type` "
            "and pass the object directly to the `scheduler` argument in `from_single_file`."
        )
        deprecate("prediction_type", "1.0.0", deprecation_message)
1492

1493
1494
    scheduler_config = SCHEDULER_DEFAULT_CONFIG
    model_type = infer_diffusers_model_type(checkpoint=checkpoint)
1495
1496
1497

    global_step = checkpoint["global_step"] if "global_step" in checkpoint else None

1498
1499
1500
1501
1502
    if original_config:
        num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", 1000)
    else:
        num_train_timesteps = 1000

1503
1504
    scheduler_config["num_train_timesteps"] = num_train_timesteps

1505
    if model_type == "v2":
1506
        if prediction_type is None:
1507
            # NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"` # as it relies on a brittle global step parameter here
1508
1509
1510
1511
1512
1513
1514
            prediction_type = "epsilon" if global_step == 875000 else "v_prediction"

    else:
        prediction_type = prediction_type or "epsilon"

    scheduler_config["prediction_type"] = prediction_type

1515
    if model_type in ["xl_base", "xl_refiner"]:
1516
        scheduler_type = "euler"
1517
    elif model_type == "playground":
1518
        scheduler_type = "edm_dpm_solver_multistep"
1519
    else:
1520
1521
1522
1523
1524
1525
1526
1527
        if original_config:
            beta_start = original_config["model"]["params"].get("linear_start")
            beta_end = original_config["model"]["params"].get("linear_end")

        else:
            beta_start = 0.02
            beta_end = 0.085

1528
1529
1530
1531
1532
1533
        scheduler_config["beta_start"] = beta_start
        scheduler_config["beta_end"] = beta_end
        scheduler_config["beta_schedule"] = "scaled_linear"
        scheduler_config["clip_sample"] = False
        scheduler_config["set_alpha_to_one"] = False

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
    # to deal with an edge case StableDiffusionUpscale pipeline has two schedulers
    if component_name == "low_res_scheduler":
        return cls.from_config(
            {
                "beta_end": 0.02,
                "beta_schedule": "scaled_linear",
                "beta_start": 0.0001,
                "clip_sample": True,
                "num_train_timesteps": 1000,
                "prediction_type": "epsilon",
                "trained_betas": None,
                "variance_type": "fixed_small",
            }
        )

    if scheduler_type is None:
        return cls.from_config(scheduler_config)

    elif scheduler_type == "pndm":
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
        scheduler_config["skip_prk_steps"] = True
        scheduler = PNDMScheduler.from_config(scheduler_config)

    elif scheduler_type == "lms":
        scheduler = LMSDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "heun":
        scheduler = HeunDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler":
        scheduler = EulerDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler-ancestral":
        scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "dpm":
        scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)

    elif scheduler_type == "ddim":
        scheduler = DDIMScheduler.from_config(scheduler_config)

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
    elif scheduler_type == "edm_dpm_solver_multistep":
        scheduler_config = {
            "algorithm_type": "dpmsolver++",
            "dynamic_thresholding_ratio": 0.995,
            "euler_at_final": False,
            "final_sigmas_type": "zero",
            "lower_order_final": True,
            "num_train_timesteps": 1000,
            "prediction_type": "epsilon",
            "rho": 7.0,
            "sample_max_value": 1.0,
            "sigma_data": 0.5,
            "sigma_max": 80.0,
            "sigma_min": 0.002,
            "solver_order": 2,
            "solver_type": "midpoint",
            "thresholding": False,
        }
        scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config)

1594
1595
1596
    else:
        raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")

1597
    return scheduler
1598
1599


1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
def _legacy_load_clip_tokenizer(cls, checkpoint, config=None, local_files_only=False):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
        clip_config = "openai/clip-vit-large-patch14"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    elif is_open_clip_model(checkpoint):
        clip_config = "stabilityai/stable-diffusion-2"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = "tokenizer"

    else:
        clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    tokenizer = cls.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)

    return tokenizer


def _legacy_load_safety_checker(local_files_only, torch_dtype):
    # Support for loading safety checker components using the deprecated
    # `load_safety_checker` argument.

    from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

    feature_extractor = AutoImageProcessor.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )
    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )

    return {"safety_checker": safety_checker, "feature_extractor": feature_extractor}
Dhruv Nair's avatar
Dhruv Nair committed
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804


# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight, dim):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight


def convert_sd3_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "joint_blocks" in k))[-1] + 1  # noqa: C401
    caption_projection_dim = 1536

    # Positional and patch embeddings.
    converted_state_dict["pos_embed.pos_embed"] = checkpoint.pop("pos_embed")
    converted_state_dict["pos_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight")
    converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias")

    # Timestep embeddings.
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias")

    # Context projections.
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("context_embedder.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("context_embedder.bias")

    # Pooled context projection.
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("y_embedder.mlp.0.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("y_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop("y_embedder.mlp.2.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("y_embedder.mlp.2.bias")

    # Transformer blocks 🎸.
    for i in range(num_layers):
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
        )
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
        )

        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])

        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])

        # output projections.
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.bias"
            )

        # norms.
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
            )
        else:
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
                dim=caption_projection_dim,
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
                dim=caption_projection_dim,
            )

        # ffs.
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.bias"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.bias"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.bias"
            )

    # Final blocks.
    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
    )

    return converted_state_dict


def is_t5_in_single_file(checkpoint):
    if "text_encoders.t5xxl.transformer.shared.weight" in checkpoint:
        return True

    return False


def convert_sd3_t5_checkpoint_to_diffusers(checkpoint):
    keys = list(checkpoint.keys())
    text_model_dict = {}

1805
    remove_prefixes = ["text_encoders.t5xxl.transformer."]
Dhruv Nair's avatar
Dhruv Nair committed
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
                text_model_dict[diffusers_key] = checkpoint.get(key)

    return text_model_dict


def create_diffusers_t5_model_from_checkpoint(
    cls,
    checkpoint,
    subfolder="",
    config=None,
    torch_dtype=None,
    local_files_only=None,
):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        model = cls(model_config)

    diffusers_format_checkpoint = convert_sd3_t5_checkpoint_to_diffusers(checkpoint)

    if is_accelerate_available():
        unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
        if model._keys_to_ignore_on_load_unexpected is not None:
            for pat in model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
            )

    else:
        model.load_state_dict(diffusers_format_checkpoint)
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

    use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (torch_dtype == torch.float16)
    if use_keep_in_fp32_modules:
        keep_in_fp32_modules = model._keep_in_fp32_modules
    else:
        keep_in_fp32_modules = []

    if keep_in_fp32_modules is not None:
        for name, param in model.named_parameters():
            if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
                # param = param.to(torch.float32) does not work here as only in the local scope.
                param.data = param.data.to(torch.float32)

1862
    return model
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881


def convert_animatediff_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    for k, v in checkpoint.items():
        if "pos_encoder" in k:
            continue

        else:
            converted_state_dict[
                k.replace(".norms.0", ".norm1")
                .replace(".norms.1", ".norm2")
                .replace(".ff_norm", ".norm3")
                .replace(".attention_blocks.0", ".attn1")
                .replace(".attention_blocks.1", ".attn2")
                .replace(".temporal_transformer", "")
            ] = v

    return converted_state_dict
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073


def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1  # noqa: C401
    num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1  # noqa: C401
    mlp_ratio = 4.0
    inner_dim = 3072

    # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
    # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    ## time_text_embed.timestep_embedder <-  time_in
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "time_in.in_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("time_in.in_layer.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "time_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("time_in.out_layer.bias")

    ## time_text_embed.text_embedder <- vector_in
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("vector_in.in_layer.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("vector_in.in_layer.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop(
        "vector_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("vector_in.out_layer.bias")

    # guidance
    has_guidance = any("guidance" in k for k in checkpoint)
    if has_guidance:
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = checkpoint.pop(
            "guidance_in.in_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = checkpoint.pop(
            "guidance_in.in_layer.bias"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = checkpoint.pop(
            "guidance_in.out_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = checkpoint.pop(
            "guidance_in.out_layer.bias"
        )

    # context_embedder
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")

    # x_embedder
    converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
    converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        # norms.
        ## norm1
        converted_state_dict[f"{block_prefix}norm1.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.bias"
        )
        ## norm1_context
        converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.bias"
        )
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
        # qk_norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.key_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
        )
        # ff img_mlp
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.bias"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.bias"
        )

    # single transfomer blocks
    for i in range(num_single_layers):
        block_prefix = f"single_transformer_blocks.{i}."
        # norm.linear  <- single_blocks.0.modulation.lin
        converted_state_dict[f"{block_prefix}norm.linear.weight"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm.linear.bias"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.bias"
        )
        # Q, K, V, mlp
        mlp_hidden_dim = int(inner_dim * mlp_ratio)
        split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
        q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
        q_bias, k_bias, v_bias, mlp_bias = torch.split(
            checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
        converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
        converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
        # qk norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.key_norm.scale"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
        converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")

    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight")
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias")
    )

    return converted_state_dict