single_file_utils.py 91.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Conversion script for the Stable Diffusion checkpoints."""
16

17
import copy
18
19
20
21
22
23
24
import os
import re
from contextlib import nullcontext
from io import BytesIO
from urllib.parse import urlparse

import requests
Dhruv Nair's avatar
Dhruv Nair committed
25
import torch
26
27
28
29
30
31
import yaml

from ..models.modeling_utils import load_state_dict
from ..schedulers import (
    DDIMScheduler,
    DPMSolverMultistepScheduler,
32
    EDMDPMSolverMultistepScheduler,
33
34
35
36
37
38
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
39
40
41
42
43
44
45
46
from ..utils import (
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    deprecate,
    is_accelerate_available,
    is_transformers_available,
    logging,
)
47
48
49
50
from ..utils.hub_utils import _get_model_file


if is_transformers_available():
51
    from transformers import AutoImageProcessor
52
53
54
55

if is_accelerate_available():
    from accelerate import init_empty_weights

56
57
    from ..models.modeling_utils import load_model_dict_into_meta

58
59
60
61
62
63
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

CHECKPOINT_KEY_NAMES = {
    "v2": "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
    "xl_base": "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias",
    "xl_refiner": "conditioner.embedders.0.model.transformer.resblocks.9.mlp.c_proj.bias",
64
65
66
67
    "upscale": "model.diffusion_model.input_blocks.10.0.skip_connection.bias",
    "controlnet": "control_model.time_embed.0.weight",
    "playground-v2-5": "edm_mean",
    "inpainting": "model.diffusion_model.input_blocks.0.0.weight",
68
    "clip": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
69
    "clip_sdxl": "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight",
Dhruv Nair's avatar
Dhruv Nair committed
70
    "clip_sd3": "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight",
71
72
73
    "open_clip": "cond_stage_model.model.token_embedding.weight",
    "open_clip_sdxl": "conditioner.embedders.1.model.positional_embedding",
    "open_clip_sdxl_refiner": "conditioner.embedders.0.model.text_projection",
Dhruv Nair's avatar
Dhruv Nair committed
74
    "open_clip_sd3": "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight",
75
76
    "stable_cascade_stage_b": "down_blocks.1.0.channelwise.0.weight",
    "stable_cascade_stage_c": "clip_txt_mapper.weight",
Dhruv Nair's avatar
Dhruv Nair committed
77
    "sd3": "model.diffusion_model.joint_blocks.0.context_block.adaLN_modulation.1.bias",
Dhruv Nair's avatar
Dhruv Nair committed
78
    "sd35_large": "model.diffusion_model.joint_blocks.37.x_block.mlp.fc1.weight",
79
    "animatediff": "down_blocks.0.motion_modules.0.temporal_transformer.transformer_blocks.0.attention_blocks.0.pos_encoder.pe",
80
81
    "animatediff_v2": "mid_block.motion_modules.0.temporal_transformer.norm.bias",
    "animatediff_sdxl_beta": "up_blocks.2.motion_modules.0.temporal_transformer.norm.weight",
82
83
    "animatediff_scribble": "controlnet_cond_embedding.conv_in.weight",
    "animatediff_rgb": "controlnet_cond_embedding.weight",
84
85
86
87
    "flux": [
        "double_blocks.0.img_attn.norm.key_norm.scale",
        "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale",
    ],
88
89
}

90
91
92
93
94
95
DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
    "xl_base": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-base-1.0"},
    "xl_refiner": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-xl-refiner-1.0"},
    "xl_inpaint": {"pretrained_model_name_or_path": "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"},
    "playground-v2-5": {"pretrained_model_name_or_path": "playgroundai/playground-v2.5-1024px-aesthetic"},
    "upscale": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-x4-upscaler"},
96
    "inpainting": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-inpainting"},
97
98
99
    "inpainting_v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-inpainting"},
    "controlnet": {"pretrained_model_name_or_path": "lllyasviel/control_v11p_sd15_canny"},
    "v2": {"pretrained_model_name_or_path": "stabilityai/stable-diffusion-2-1"},
100
    "v1": {"pretrained_model_name_or_path": "stable-diffusion-v1-5/stable-diffusion-v1-5"},
101
102
103
104
105
106
107
108
109
110
111
112
113
    "stable_cascade_stage_b": {"pretrained_model_name_or_path": "stabilityai/stable-cascade", "subfolder": "decoder"},
    "stable_cascade_stage_b_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade",
        "subfolder": "decoder_lite",
    },
    "stable_cascade_stage_c": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior",
    },
    "stable_cascade_stage_c_lite": {
        "pretrained_model_name_or_path": "stabilityai/stable-cascade-prior",
        "subfolder": "prior_lite",
    },
Dhruv Nair's avatar
Dhruv Nair committed
114
115
116
    "sd3": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3-medium-diffusers",
    },
Dhruv Nair's avatar
Dhruv Nair committed
117
118
119
    "sd35_large": {
        "pretrained_model_name_or_path": "stabilityai/stable-diffusion-3.5-large",
    },
120
121
122
123
    "animatediff_v1": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5"},
    "animatediff_v2": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-2"},
    "animatediff_v3": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-v1-5-3"},
    "animatediff_sdxl_beta": {"pretrained_model_name_or_path": "guoyww/animatediff-motion-adapter-sdxl-beta"},
124
125
    "animatediff_scribble": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-scribble"},
    "animatediff_rgb": {"pretrained_model_name_or_path": "guoyww/animatediff-sparsectrl-rgb"},
126
127
    "flux-dev": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-dev"},
    "flux-schnell": {"pretrained_model_name_or_path": "black-forest-labs/FLUX.1-schnell"},
128
129
}

130
131
132
133
134
135
136
137
138
139
140
141
# Use to configure model sample size when original config is provided
DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP = {
    "xl_base": 1024,
    "xl_refiner": 1024,
    "xl_inpaint": 1024,
    "playground-v2-5": 1024,
    "upscale": 512,
    "inpainting": 512,
    "inpainting_v2": 512,
    "controlnet": 512,
    "v2": 768,
    "v1": 512,
142
143
144
}


145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
DIFFUSERS_TO_LDM_MAPPING = {
    "unet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "conv_norm_out.weight": "out.0.weight",
            "conv_norm_out.bias": "out.0.bias",
            "conv_out.weight": "out.2.weight",
            "conv_out.bias": "out.2.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "controlnet": {
        "layers": {
            "time_embedding.linear_1.weight": "time_embed.0.weight",
            "time_embedding.linear_1.bias": "time_embed.0.bias",
            "time_embedding.linear_2.weight": "time_embed.2.weight",
            "time_embedding.linear_2.bias": "time_embed.2.bias",
            "conv_in.weight": "input_blocks.0.0.weight",
            "conv_in.bias": "input_blocks.0.0.bias",
            "controlnet_cond_embedding.conv_in.weight": "input_hint_block.0.weight",
            "controlnet_cond_embedding.conv_in.bias": "input_hint_block.0.bias",
            "controlnet_cond_embedding.conv_out.weight": "input_hint_block.14.weight",
            "controlnet_cond_embedding.conv_out.bias": "input_hint_block.14.bias",
        },
        "class_embed_type": {
            "class_embedding.linear_1.weight": "label_emb.0.0.weight",
            "class_embedding.linear_1.bias": "label_emb.0.0.bias",
            "class_embedding.linear_2.weight": "label_emb.0.2.weight",
            "class_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
        "addition_embed_type": {
            "add_embedding.linear_1.weight": "label_emb.0.0.weight",
            "add_embedding.linear_1.bias": "label_emb.0.0.bias",
            "add_embedding.linear_2.weight": "label_emb.0.2.weight",
            "add_embedding.linear_2.bias": "label_emb.0.2.bias",
        },
    },
    "vae": {
        "encoder.conv_in.weight": "encoder.conv_in.weight",
        "encoder.conv_in.bias": "encoder.conv_in.bias",
        "encoder.conv_out.weight": "encoder.conv_out.weight",
        "encoder.conv_out.bias": "encoder.conv_out.bias",
        "encoder.conv_norm_out.weight": "encoder.norm_out.weight",
        "encoder.conv_norm_out.bias": "encoder.norm_out.bias",
        "decoder.conv_in.weight": "decoder.conv_in.weight",
        "decoder.conv_in.bias": "decoder.conv_in.bias",
        "decoder.conv_out.weight": "decoder.conv_out.weight",
        "decoder.conv_out.bias": "decoder.conv_out.bias",
        "decoder.conv_norm_out.weight": "decoder.norm_out.weight",
        "decoder.conv_norm_out.bias": "decoder.norm_out.bias",
        "quant_conv.weight": "quant_conv.weight",
        "quant_conv.bias": "quant_conv.bias",
        "post_quant_conv.weight": "post_quant_conv.weight",
        "post_quant_conv.bias": "post_quant_conv.bias",
    },
    "openclip": {
        "layers": {
            "text_model.embeddings.position_embedding.weight": "positional_embedding",
            "text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "text_model.final_layer_norm.weight": "ln_final.weight",
            "text_model.final_layer_norm.bias": "ln_final.bias",
            "text_projection.weight": "text_projection",
        },
        "transformer": {
            "text_model.encoder.layers.": "resblocks.",
            "layer_norm1": "ln_1",
            "layer_norm2": "ln_2",
            ".fc1.": ".c_fc.",
            ".fc2.": ".c_proj.",
            ".self_attn": ".attn",
            "transformer.text_model.final_layer_norm.": "ln_final.",
            "transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight",
            "transformer.text_model.embeddings.position_embedding.weight": "positional_embedding",
        },
    },
}

SD_2_TEXT_ENCODER_KEYS_TO_IGNORE = [
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.in_proj_weight",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.attn.out_proj.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_1.weight",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.bias",
    "cond_stage_model.model.transformer.resblocks.23.ln_2.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_fc.weight",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.bias",
    "cond_stage_model.model.transformer.resblocks.23.mlp.c_proj.weight",
    "cond_stage_model.model.text_projection",
]

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# To support legacy scheduler_type argument
SCHEDULER_DEFAULT_CONFIG = {
    "beta_schedule": "scaled_linear",
    "beta_start": 0.00085,
    "beta_end": 0.012,
    "interpolation_type": "linear",
    "num_train_timesteps": 1000,
    "prediction_type": "epsilon",
    "sample_max_value": 1.0,
    "set_alpha_to_one": False,
    "skip_prk_steps": True,
    "steps_offset": 1,
    "timestep_spacing": "leading",
}

269
LDM_VAE_KEYS = ["first_stage_model.", "vae."]
270
271
272
273
LDM_VAE_DEFAULT_SCALING_FACTOR = 0.18215
PLAYGROUND_VAE_SCALING_FACTOR = 0.5
LDM_UNET_KEY = "model.diffusion_model."
LDM_CONTROLNET_KEY = "control_model."
Dhruv Nair's avatar
Dhruv Nair committed
274
275
276
277
LDM_CLIP_PREFIX_TO_REMOVE = [
    "cond_stage_model.transformer.",
    "conditioner.embedders.0.transformer.",
]
278
LDM_OPEN_CLIP_TEXT_PROJECTION_DIM = 1024
279
SCHEDULER_LEGACY_KWARGS = ["prediction_type", "scheduler_type"]
280
281
282
283

VALID_URL_PREFIXES = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]


284
285
286
287
288
289
290
291
292
293
294
295
296
297
class SingleFileComponentError(Exception):
    def __init__(self, message=None):
        self.message = message
        super().__init__(self.message)


def is_valid_url(url):
    result = urlparse(url)
    if result.scheme and result.netloc:
        return True

    return False


298
def _extract_repo_id_and_weights_name(pretrained_model_name_or_path):
299
300
301
    if not is_valid_url(pretrained_model_name_or_path):
        raise ValueError("Invalid `pretrained_model_name_or_path` provided. Please set it to a valid URL.")

302
303
304
305
306
307
308
    pattern = r"([^/]+)/([^/]+)/(?:blob/main/)?(.+)"
    weights_name = None
    repo_id = (None,)
    for prefix in VALID_URL_PREFIXES:
        pretrained_model_name_or_path = pretrained_model_name_or_path.replace(prefix, "")
    match = re.match(pattern, pretrained_model_name_or_path)
    if not match:
309
        logger.warning("Unable to identify the repo_id and weights_name from the provided URL.")
310
311
312
313
314
315
316
317
        return repo_id, weights_name

    repo_id = f"{match.group(1)}/{match.group(2)}"
    weights_name = match.group(3)

    return repo_id, weights_name


318
319
320
321
322
323
324
def _is_model_weights_in_cached_folder(cached_folder, name):
    pretrained_model_name_or_path = os.path.join(cached_folder, name)
    weights_exist = False

    for weights_name in [WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME]:
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            weights_exist = True
325

326
    return weights_exist
327
328


329
330
331
332
def _is_legacy_scheduler_kwargs(kwargs):
    return any(k in SCHEDULER_LEGACY_KWARGS for k in kwargs.keys())


333
def load_single_file_checkpoint(
334
335
336
337
338
339
340
    pretrained_model_link_or_path,
    force_download=False,
    proxies=None,
    token=None,
    cache_dir=None,
    local_files_only=None,
    revision=None,
341
342
):
    if os.path.isfile(pretrained_model_link_or_path):
343
344
        pretrained_model_link_or_path = pretrained_model_link_or_path

345
346
    else:
        repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path)
347
        pretrained_model_link_or_path = _get_model_file(
348
349
350
351
352
353
354
355
356
            repo_id,
            weights_name=weights_name,
            force_download=force_download,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
        )
357
358

    checkpoint = load_state_dict(pretrained_model_link_or_path)
359
360
361
362
363

    # some checkpoints contain the model state dict under a "state_dict" key
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

364
    return checkpoint
365
366


367
368
369
370
def fetch_original_config(original_config_file, local_files_only=False):
    if os.path.isfile(original_config_file):
        with open(original_config_file, "r") as fp:
            original_config_file = fp.read()
371

372
373
374
375
376
377
    elif is_valid_url(original_config_file):
        if local_files_only:
            raise ValueError(
                "`local_files_only` is set to True, but a URL was provided as `original_config_file`. "
                "Please provide a valid local file path."
            )
378

379
        original_config_file = BytesIO(requests.get(original_config_file).content)
380

381
382
    else:
        raise ValueError("Invalid `original_config_file` provided. Please set it to a valid file path or URL.")
383

384
    original_config = yaml.safe_load(original_config_file)
385

386
    return original_config
387
388


389
390
391
def is_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip"] in checkpoint:
        return True
392

393
    return False
394
395


396
397
398
def is_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sdxl"] in checkpoint:
        return True
399

400
    return False
401
402


Dhruv Nair's avatar
Dhruv Nair committed
403
404
405
406
407
408
409
def is_clip_sd3_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["clip_sd3"] in checkpoint:
        return True

    return False


410
411
412
def is_open_clip_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip"] in checkpoint:
        return True
413

414
    return False
415
416


417
418
419
def is_open_clip_sdxl_model(checkpoint):
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl"] in checkpoint:
        return True
420

421
    return False
422
423


Dhruv Nair's avatar
Dhruv Nair committed
424
def is_open_clip_sd3_model(checkpoint):
425
426
427
428
    if CHECKPOINT_KEY_NAMES["open_clip_sd3"] in checkpoint:
        return True

    return False
Dhruv Nair's avatar
Dhruv Nair committed
429
430


431
def is_open_clip_sdxl_refiner_model(checkpoint):
432
    if CHECKPOINT_KEY_NAMES["open_clip_sdxl_refiner"] in checkpoint:
433
434
435
436
437
438
439
440
441
        return True

    return False


def is_clip_model_in_single_file(class_obj, checkpoint):
    is_clip_in_checkpoint = any(
        [
            is_clip_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
442
            is_clip_sd3_model(checkpoint),
443
444
445
            is_open_clip_model(checkpoint),
            is_open_clip_sdxl_model(checkpoint),
            is_open_clip_sdxl_refiner_model(checkpoint),
Dhruv Nair's avatar
Dhruv Nair committed
446
            is_open_clip_sd3_model(checkpoint),
447
        ]
448
    )
449
450
451
452
453
454
    if (
        class_obj.__name__ == "CLIPTextModel" or class_obj.__name__ == "CLIPTextModelWithProjection"
    ) and is_clip_in_checkpoint:
        return True

    return False
455
456


457
458
459
460
461
462
463
def infer_diffusers_model_type(checkpoint):
    if (
        CHECKPOINT_KEY_NAMES["inpainting"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["inpainting"]].shape[1] == 9
    ):
        if CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
            model_type = "inpainting_v2"
464
465
        elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
            model_type = "xl_inpaint"
466
        else:
467
            model_type = "inpainting"
468

469
470
    elif CHECKPOINT_KEY_NAMES["v2"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["v2"]].shape[-1] == 1024:
        model_type = "v2"
471

472
473
    elif CHECKPOINT_KEY_NAMES["playground-v2-5"] in checkpoint:
        model_type = "playground-v2-5"
474

475
476
    elif CHECKPOINT_KEY_NAMES["xl_base"] in checkpoint:
        model_type = "xl_base"
477

478
479
    elif CHECKPOINT_KEY_NAMES["xl_refiner"] in checkpoint:
        model_type = "xl_refiner"
480

481
482
    elif CHECKPOINT_KEY_NAMES["upscale"] in checkpoint:
        model_type = "upscale"
483

484
485
    elif CHECKPOINT_KEY_NAMES["controlnet"] in checkpoint:
        model_type = "controlnet"
486

487
488
489
490
491
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 1536
    ):
        model_type = "stable_cascade_stage_c_lite"
492

493
494
495
496
497
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_c"]].shape[0] == 2048
    ):
        model_type = "stable_cascade_stage_c"
498

499
500
501
502
503
    elif (
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 576
    ):
        model_type = "stable_cascade_stage_b_lite"
504
505

    elif (
506
507
        CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"] in checkpoint
        and checkpoint[CHECKPOINT_KEY_NAMES["stable_cascade_stage_b"]].shape[-1] == 640
508
    ):
509
        model_type = "stable_cascade_stage_b"
510

Dhruv Nair's avatar
Dhruv Nair committed
511
    elif CHECKPOINT_KEY_NAMES["sd3"] in checkpoint and checkpoint[CHECKPOINT_KEY_NAMES["sd3"]].shape[-1] == 9216:
Dhruv Nair's avatar
Dhruv Nair committed
512
513
        model_type = "sd3"

Dhruv Nair's avatar
Dhruv Nair committed
514
515
516
    elif CHECKPOINT_KEY_NAMES["sd35_large"] in checkpoint:
        model_type = "sd35_large"

517
    elif CHECKPOINT_KEY_NAMES["animatediff"] in checkpoint:
518
519
520
521
522
523
524
        if CHECKPOINT_KEY_NAMES["animatediff_scribble"] in checkpoint:
            model_type = "animatediff_scribble"

        elif CHECKPOINT_KEY_NAMES["animatediff_rgb"] in checkpoint:
            model_type = "animatediff_rgb"

        elif CHECKPOINT_KEY_NAMES["animatediff_v2"] in checkpoint:
525
526
527
528
529
530
531
532
533
534
535
            model_type = "animatediff_v2"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff_sdxl_beta"]].shape[-1] == 320:
            model_type = "animatediff_sdxl_beta"

        elif checkpoint[CHECKPOINT_KEY_NAMES["animatediff"]].shape[1] == 24:
            model_type = "animatediff_v1"

        else:
            model_type = "animatediff_v3"

536
537
538
539
    elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["flux"]):
        if any(
            g in checkpoint for g in ["guidance_in.in_layer.bias", "model.diffusion_model.guidance_in.in_layer.bias"]
        ):
540
541
542
            model_type = "flux-dev"
        else:
            model_type = "flux-schnell"
543
    else:
544
545
546
547
548
549
550
551
        model_type = "v1"

    return model_type


def fetch_diffusers_config(checkpoint):
    model_type = infer_diffusers_model_type(checkpoint)
    model_path = DIFFUSERS_DEFAULT_PIPELINE_PATHS[model_type]
552
    model_path = copy.deepcopy(model_path)
553
554
555
556
557
558

    return model_path


def set_image_size(checkpoint, image_size=None):
    if image_size:
559
560
        return image_size

561
562
563
564
565
    model_type = infer_diffusers_model_type(checkpoint)
    image_size = DIFFUSERS_TO_LDM_DEFAULT_IMAGE_SIZE_MAP[model_type]

    return image_size

566
567
568
569
570
571
572
573
574
575
576
577
578
579

# Copied from diffusers.pipelines.stable_diffusion.convert_from_ckpt.conv_attn_to_linear
def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["query.weight", "key.weight", "value.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


580
581
582
def create_unet_diffusers_config_from_ldm(
    original_config, checkpoint, image_size=None, upcast_attention=None, num_in_channels=None
):
583
584
585
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
586
587
588
589
590
591
592
593
594
    if image_size is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `image_size` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

595
596
597
598
599
600
601
602
    if (
        "unet_config" in original_config["model"]["params"]
        and original_config["model"]["params"]["unet_config"] is not None
    ):
        unet_params = original_config["model"]["params"]["unet_config"]["params"]
    else:
        unet_params = original_config["model"]["params"]["network_config"]["params"]

603
604
605
606
607
608
609
610
611
612
    if num_in_channels is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `num_in_channels` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        in_channels = num_in_channels
    else:
        in_channels = unet_params["in_channels"]

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
    block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D"
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D"
        up_block_types.append(block_type)
        resolution //= 2

    if unet_params["transformer_depth"] is not None:
        transformer_layers_per_block = (
            unet_params["transformer_depth"]
            if isinstance(unet_params["transformer_depth"], int)
            else list(unet_params["transformer_depth"])
        )
    else:
        transformer_layers_per_block = 1

    vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1)

    head_dim = unet_params["num_heads"] if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params["use_linear_in_transformer"] if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim_mult = unet_params["model_channels"] // unet_params["num_head_channels"]
            head_dim = [head_dim_mult * c for c in list(unet_params["channel_mult"])]

    class_embed_type = None
    addition_embed_type = None
    addition_time_embed_dim = None
    projection_class_embeddings_input_dim = None
    context_dim = None

    if unet_params["context_dim"] is not None:
        context_dim = (
            unet_params["context_dim"]
            if isinstance(unet_params["context_dim"], int)
            else unet_params["context_dim"][0]
        )

    if "num_classes" in unet_params:
        if unet_params["num_classes"] == "sequential":
            if context_dim in [2048, 1280]:
                # SDXL
                addition_embed_type = "text_time"
                addition_time_embed_dim = 256
            else:
                class_embed_type = "projection"
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params["adm_in_channels"]

    config = {
        "sample_size": image_size // vae_scale_factor,
677
        "in_channels": in_channels,
678
679
        "down_block_types": down_block_types,
        "block_out_channels": block_out_channels,
680
681
682
683
684
685
686
687
688
689
690
        "layers_per_block": unet_params["num_res_blocks"],
        "cross_attention_dim": context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "addition_embed_type": addition_embed_type,
        "addition_time_embed_dim": addition_time_embed_dim,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
        "transformer_layers_per_block": transformer_layers_per_block,
    }

691
692
693
694
695
696
697
698
    if upcast_attention is not None:
        deprecation_message = (
            "Configuring UNet2DConditionModel with the `upcast_attention` argument to `from_single_file`"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)
        config["upcast_attention"] = upcast_attention

699
700
701
702
703
704
705
    if "disable_self_attentions" in unet_params:
        config["only_cross_attention"] = unet_params["disable_self_attentions"]

    if "num_classes" in unet_params and isinstance(unet_params["num_classes"], int):
        config["num_class_embeds"] = unet_params["num_classes"]

    config["out_channels"] = unet_params["out_channels"]
706
    config["up_block_types"] = up_block_types
707
708
709
710

    return config


711
712
713
714
715
716
717
718
719
720
def create_controlnet_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, **kwargs):
    if image_size is not None:
        deprecation_message = (
            "Configuring ControlNetModel with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

721
    unet_params = original_config["model"]["params"]["control_stage_config"]["params"]
722
    diffusers_unet_config = create_unet_diffusers_config_from_ldm(original_config, image_size=image_size)
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742

    controlnet_config = {
        "conditioning_channels": unet_params["hint_channels"],
        "in_channels": diffusers_unet_config["in_channels"],
        "down_block_types": diffusers_unet_config["down_block_types"],
        "block_out_channels": diffusers_unet_config["block_out_channels"],
        "layers_per_block": diffusers_unet_config["layers_per_block"],
        "cross_attention_dim": diffusers_unet_config["cross_attention_dim"],
        "attention_head_dim": diffusers_unet_config["attention_head_dim"],
        "use_linear_projection": diffusers_unet_config["use_linear_projection"],
        "class_embed_type": diffusers_unet_config["class_embed_type"],
        "addition_embed_type": diffusers_unet_config["addition_embed_type"],
        "addition_time_embed_dim": diffusers_unet_config["addition_time_embed_dim"],
        "projection_class_embeddings_input_dim": diffusers_unet_config["projection_class_embeddings_input_dim"],
        "transformer_layers_per_block": diffusers_unet_config["transformer_layers_per_block"],
    }

    return controlnet_config


743
def create_vae_diffusers_config_from_ldm(original_config, checkpoint, image_size=None, scaling_factor=None):
744
745
746
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
    if image_size is not None:
        deprecation_message = (
            "Configuring AutoencoderKL with the `image_size` argument"
            "is deprecated and will be ignored in future versions."
        )
        deprecate("image_size", "1.0.0", deprecation_message)

    image_size = set_image_size(checkpoint, image_size=image_size)

    if "edm_mean" in checkpoint and "edm_std" in checkpoint:
        latents_mean = checkpoint["edm_mean"]
        latents_std = checkpoint["edm_std"]
    else:
        latents_mean = None
        latents_std = None

763
    vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"]
764
765
    if (scaling_factor is None) and (latents_mean is not None) and (latents_std is not None):
        scaling_factor = PLAYGROUND_VAE_SCALING_FACTOR
766

767
    elif (scaling_factor is None) and ("scale_factor" in original_config["model"]["params"]):
768
        scaling_factor = original_config["model"]["params"]["scale_factor"]
769

770
771
    elif scaling_factor is None:
        scaling_factor = LDM_VAE_DEFAULT_SCALING_FACTOR
772
773
774
775
776
777
778
779
780

    block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]]
    down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
    up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)

    config = {
        "sample_size": image_size,
        "in_channels": vae_params["in_channels"],
        "out_channels": vae_params["out_ch"],
781
782
783
        "down_block_types": down_block_types,
        "up_block_types": up_block_types,
        "block_out_channels": block_out_channels,
784
785
786
787
        "latent_channels": vae_params["z_channels"],
        "layers_per_block": vae_params["num_res_blocks"],
        "scaling_factor": scaling_factor,
    }
788
789
    if latents_mean is not None and latents_std is not None:
        config.update({"latents_mean": latents_mean, "latents_std": latents_std})
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

    return config


def update_unet_resnet_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping=None):
    for ldm_key in ldm_keys:
        diffusers_key = (
            ldm_key.replace("in_layers.0", "norm1")
            .replace("in_layers.2", "conv1")
            .replace("out_layers.0", "norm2")
            .replace("out_layers.3", "conv2")
            .replace("emb_layers.1", "time_emb_proj")
            .replace("skip_connection", "conv_shortcut")
        )
        if mapping:
            diffusers_key = diffusers_key.replace(mapping["old"], mapping["new"])
806
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)
807
808
809
810
811


def update_unet_attention_ldm_to_diffusers(ldm_keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in ldm_keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"])
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_resnet_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = ldm_key.replace(mapping["old"], mapping["new"]).replace("nin_shortcut", "conv_shortcut")
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)


def update_vae_attentions_ldm_to_diffusers(keys, new_checkpoint, checkpoint, mapping):
    for ldm_key in keys:
        diffusers_key = (
            ldm_key.replace(mapping["old"], mapping["new"])
            .replace("norm.weight", "group_norm.weight")
            .replace("norm.bias", "group_norm.bias")
            .replace("q.weight", "to_q.weight")
            .replace("q.bias", "to_q.bias")
            .replace("k.weight", "to_k.weight")
            .replace("k.bias", "to_k.bias")
            .replace("v.weight", "to_v.weight")
            .replace("v.bias", "to_v.bias")
            .replace("proj_out.weight", "to_out.0.weight")
            .replace("proj_out.bias", "to_out.0.bias")
        )
        new_checkpoint[diffusers_key] = checkpoint.get(ldm_key)

        # proj_attn.weight has to be converted from conv 1D to linear
        shape = new_checkpoint[diffusers_key].shape

        if len(shape) == 3:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0]
        elif len(shape) == 4:
            new_checkpoint[diffusers_key] = new_checkpoint[diffusers_key][:, :, 0, 0]


def convert_stable_cascade_unet_single_file_to_diffusers(checkpoint, **kwargs):
    is_stage_c = "clip_txt_mapper.weight" in checkpoint

    if is_stage_c:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]
    else:
        state_dict = {}
        for key in checkpoint.keys():
            if key.endswith("in_proj_weight"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_weight", "to_q.weight")] = weights[0]
                state_dict[key.replace("attn.in_proj_weight", "to_k.weight")] = weights[1]
                state_dict[key.replace("attn.in_proj_weight", "to_v.weight")] = weights[2]
            elif key.endswith("in_proj_bias"):
                weights = checkpoint[key].chunk(3, 0)
                state_dict[key.replace("attn.in_proj_bias", "to_q.bias")] = weights[0]
                state_dict[key.replace("attn.in_proj_bias", "to_k.bias")] = weights[1]
                state_dict[key.replace("attn.in_proj_bias", "to_v.bias")] = weights[2]
            elif key.endswith("out_proj.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.weight", "to_out.0.weight")] = weights
            elif key.endswith("out_proj.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("attn.out_proj.bias", "to_out.0.bias")] = weights
            # rename clip_mapper to clip_txt_pooled_mapper
            elif key.endswith("clip_mapper.weight"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.weight", "clip_txt_pooled_mapper.weight")] = weights
            elif key.endswith("clip_mapper.bias"):
                weights = checkpoint[key]
                state_dict[key.replace("clip_mapper.bias", "clip_txt_pooled_mapper.bias")] = weights
            else:
                state_dict[key] = checkpoint[key]

    return state_dict
901
902


903
def convert_ldm_unet_checkpoint(checkpoint, config, extract_ema=False, **kwargs):
904
905
906
907
908
909
910
911
912
913
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """
    # extract state_dict for UNet
    unet_state_dict = {}
    keys = list(checkpoint.keys())
    unet_key = LDM_UNET_KEY

    # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
    if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
914
915
        logger.warning("Checkpoint has both EMA and non-EMA weights.")
        logger.warning(
916
917
918
919
920
921
            "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
            " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
        )
        for key in keys:
            if key.startswith("model.diffusion_model"):
                flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
922
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(flat_ema_key)
923
924
    else:
        if sum(k.startswith("model_ema") for k in keys) > 100:
925
            logger.warning(
926
927
928
929
930
                "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
            )
        for key in keys:
            if key.startswith(unet_key):
931
                unet_state_dict[key.replace(unet_key, "")] = checkpoint.get(key)
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

    new_checkpoint = {}
    ldm_unet_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["layers"]
    for diffusers_key, ldm_key in ldm_unet_keys.items():
        if ldm_key not in unet_state_dict:
            continue
        new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("class_embed_type" in config) and (config["class_embed_type"] in ["timestep", "projection"]):
        class_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["class_embed_type"]
        for diffusers_key, ldm_key in class_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    if ("addition_embed_type" in config) and (config["addition_embed_type"] == "text_time"):
        addition_embed_keys = DIFFUSERS_TO_LDM_MAPPING["unet"]["addition_embed_type"]
        for diffusers_key, ldm_key in addition_embed_keys.items():
            new_checkpoint[diffusers_key] = unet_state_dict[ldm_key]

    # Relevant to StableDiffusionUpscalePipeline
    if "num_class_embeds" in config:
        if (config["num_class_embeds"] is not None) and ("label_emb.weight" in unet_state_dict):
            new_checkpoint["class_embedding.weight"] = unet_state_dict["label_emb.weight"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
992
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.get(
993
994
                f"input_blocks.{i}.0.op.weight"
            )
995
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.get(
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # Mid blocks
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                unet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

    # Up Blocks
    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)

        resnets = [
            key for key in output_blocks[i] if f"output_blocks.{i}.0" in key and f"output_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            unet_state_dict,
            {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        attentions = [
            key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and f"output_blocks.{i}.1.conv" not in key
        ]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                unet_state_dict,
                {"old": f"output_blocks.{i}.1", "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

        if f"output_blocks.{i}.1.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.1.conv.bias"
            ]
        if f"output_blocks.{i}.2.conv.weight" in unet_state_dict:
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.weight"
            ]
            new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                f"output_blocks.{i}.2.conv.bias"
            ]

    return new_checkpoint


def convert_controlnet_checkpoint(
    checkpoint,
    config,
1073
    **kwargs,
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
):
    # Some controlnet ckpt files are distributed independently from the rest of the
    # model components i.e. https://huggingface.co/thibaud/controlnet-sd21/
    if "time_embed.0.weight" in checkpoint:
        controlnet_state_dict = checkpoint

    else:
        controlnet_state_dict = {}
        keys = list(checkpoint.keys())
        controlnet_key = LDM_CONTROLNET_KEY
        for key in keys:
            if key.startswith(controlnet_key):
1086
                controlnet_state_dict[key.replace(controlnet_key, "")] = checkpoint.get(key)
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

    new_checkpoint = {}
    ldm_controlnet_keys = DIFFUSERS_TO_LDM_MAPPING["controlnet"]["layers"]
    for diffusers_key, ldm_key in ldm_controlnet_keys.items():
        if ldm_key not in controlnet_state_dict:
            continue
        new_checkpoint[diffusers_key] = controlnet_state_dict[ldm_key]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "input_blocks" in layer}
    )
    input_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Down blocks
    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        resnets = [
            key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
        ]
        update_unet_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            controlnet_state_dict,
            {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"},
        )

        if f"input_blocks.{i}.0.op.weight" in controlnet_state_dict:
1120
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = controlnet_state_dict.get(
1121
1122
                f"input_blocks.{i}.0.op.weight"
            )
1123
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = controlnet_state_dict.get(
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
                f"input_blocks.{i}.0.op.bias"
            )

        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
        if attentions:
            update_unet_attention_ldm_to_diffusers(
                attentions,
                new_checkpoint,
                controlnet_state_dict,
                {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"},
            )

    # controlnet down blocks
    for i in range(num_input_blocks):
1138
1139
        new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = controlnet_state_dict.get(f"zero_convs.{i}.0.weight")
        new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = controlnet_state_dict.get(f"zero_convs.{i}.0.bias")
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len(
        {".".join(layer.split(".")[:2]) for layer in controlnet_state_dict if "middle_block" in layer}
    )
    middle_blocks = {
        layer_id: [key for key in controlnet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
    # Mid blocks
    for key in middle_blocks.keys():
        diffusers_key = max(key - 1, 0)
        if key % 2 == 0:
            update_unet_resnet_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.resnets.{diffusers_key}"},
            )
        else:
            update_unet_attention_ldm_to_diffusers(
                middle_blocks[key],
                new_checkpoint,
                controlnet_state_dict,
                mapping={"old": f"middle_block.{key}", "new": f"mid_block.attentions.{diffusers_key}"},
            )
1167
1168

    # mid block
1169
1170
    new_checkpoint["controlnet_mid_block.weight"] = controlnet_state_dict.get("middle_block_out.0.weight")
    new_checkpoint["controlnet_mid_block.bias"] = controlnet_state_dict.get("middle_block_out.0.bias")
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

    # controlnet cond embedding blocks
    cond_embedding_blocks = {
        ".".join(layer.split(".")[:2])
        for layer in controlnet_state_dict
        if "input_hint_block" in layer and ("input_hint_block.0" not in layer) and ("input_hint_block.14" not in layer)
    }
    num_cond_embedding_blocks = len(cond_embedding_blocks)

    for idx in range(1, num_cond_embedding_blocks + 1):
        diffusers_idx = idx - 1
        cond_block_id = 2 * idx

1184
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.weight"] = controlnet_state_dict.get(
1185
1186
            f"input_hint_block.{cond_block_id}.weight"
        )
1187
        new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_idx}.bias"] = controlnet_state_dict.get(
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
            f"input_hint_block.{cond_block_id}.bias"
        )

    return new_checkpoint


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    # remove the LDM_VAE_KEY prefix from the ldm checkpoint keys so that it is easier to map them to diffusers keys
    vae_state_dict = {}
    keys = list(checkpoint.keys())
1199
1200
1201
1202
1203
    vae_key = ""
    for ldm_vae_key in LDM_VAE_KEYS:
        if any(k.startswith(ldm_vae_key) for k in keys):
            vae_key = ldm_vae_key

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}
    vae_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["vae"]
    for diffusers_key, ldm_key in vae_diffusers_ldm_map.items():
        if ldm_key not in vae_state_dict:
            continue
        new_checkpoint[diffusers_key] = vae_state_dict[ldm_key]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len(config["down_block_types"])
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"},
        )
        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
1230
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.get(
1231
1232
                f"encoder.down.{i}.downsample.conv.weight"
            )
1233
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.get(
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
                f"encoder.down.{i}.downsample.conv.bias"
            )

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len(config["up_block_types"])
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i
        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"},
        )
        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
        update_vae_resnet_ldm_to_diffusers(
            resnets,
            new_checkpoint,
            vae_state_dict,
            mapping={"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"},
        )

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    update_vae_attentions_ldm_to_diffusers(
        mid_attentions, new_checkpoint, vae_state_dict, mapping={"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    )
    conv_attn_to_linear(new_checkpoint)

    return new_checkpoint


1298
def convert_ldm_clip_checkpoint(checkpoint, remove_prefix=None):
1299
1300
1301
    keys = list(checkpoint.keys())
    text_model_dict = {}

1302
1303
1304
1305
    remove_prefixes = []
    remove_prefixes.extend(LDM_CLIP_PREFIX_TO_REMOVE)
    if remove_prefix:
        remove_prefixes.append(remove_prefix)
1306
1307
1308
1309
1310

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
1311
                text_model_dict[diffusers_key] = checkpoint.get(key)
1312

1313
    return text_model_dict
1314

1315

1316
1317
def convert_open_clip_checkpoint(
    text_model,
1318
1319
1320
1321
1322
    checkpoint,
    prefix="cond_stage_model.model.",
):
    text_model_dict = {}
    text_proj_key = prefix + "text_projection"
1323
1324
1325
1326
1327
1328
1329
1330

    if text_proj_key in checkpoint:
        text_proj_dim = int(checkpoint[text_proj_key].shape[0])
    elif hasattr(text_model.config, "projection_dim"):
        text_proj_dim = text_model.config.projection_dim
    else:
        text_proj_dim = LDM_OPEN_CLIP_TEXT_PROJECTION_DIM

1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    keys = list(checkpoint.keys())
    keys_to_ignore = SD_2_TEXT_ENCODER_KEYS_TO_IGNORE

    openclip_diffusers_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["layers"]
    for diffusers_key, ldm_key in openclip_diffusers_ldm_map.items():
        ldm_key = prefix + ldm_key
        if ldm_key not in checkpoint:
            continue
        if ldm_key in keys_to_ignore:
            continue
        if ldm_key.endswith("text_projection"):
            text_model_dict[diffusers_key] = checkpoint[ldm_key].T.contiguous()
        else:
            text_model_dict[diffusers_key] = checkpoint[ldm_key]

    for key in keys:
        if key in keys_to_ignore:
            continue

        if not key.startswith(prefix + "transformer."):
            continue

        diffusers_key = key.replace(prefix + "transformer.", "")
        transformer_diffusers_to_ldm_map = DIFFUSERS_TO_LDM_MAPPING["openclip"]["transformer"]
        for new_key, old_key in transformer_diffusers_to_ldm_map.items():
            diffusers_key = (
                diffusers_key.replace(old_key, new_key).replace(".in_proj_weight", "").replace(".in_proj_bias", "")
            )

        if key.endswith(".in_proj_weight"):
1361
            weight_value = checkpoint.get(key)
1362

1363
1364
1365
1366
1367
            text_model_dict[diffusers_key + ".q_proj.weight"] = weight_value[:text_proj_dim, :].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.weight"] = (
                weight_value[text_proj_dim : text_proj_dim * 2, :].clone().detach()
            )
            text_model_dict[diffusers_key + ".v_proj.weight"] = weight_value[text_proj_dim * 2 :, :].clone().detach()
1368
1369

        elif key.endswith(".in_proj_bias"):
1370
1371
1372
1373
            weight_value = checkpoint.get(key)
            text_model_dict[diffusers_key + ".q_proj.bias"] = weight_value[:text_proj_dim].clone().detach()
            text_model_dict[diffusers_key + ".k_proj.bias"] = (
                weight_value[text_proj_dim : text_proj_dim * 2].clone().detach()
1374
            )
1375
1376
1377
            text_model_dict[diffusers_key + ".v_proj.bias"] = weight_value[text_proj_dim * 2 :].clone().detach()
        else:
            text_model_dict[diffusers_key] = checkpoint.get(key)
1378

1379
    return text_model_dict
1380
1381


1382
1383
def create_diffusers_clip_model_from_ldm(
    cls,
1384
    checkpoint,
1385
1386
    subfolder="",
    config=None,
1387
    torch_dtype=None,
1388
1389
    local_files_only=None,
    is_legacy_loading=False,
1390
):
1391
1392
1393
1394
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)
1395

1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    # For backwards compatibility
    # Older versions of `from_single_file` expected CLIP configs to be placed in their original transformers model repo
    # in the cache_dir, rather than in a subfolder of the Diffusers model
    if is_legacy_loading:
        logger.warning(
            (
                "Detected legacy CLIP loading behavior. Please run `from_single_file` with `local_files_only=False once to update "
                "the local cache directory with the necessary CLIP model config files. "
                "Attempting to load CLIP model from legacy cache directory."
            )
        )
1407

1408
1409
1410
1411
        if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
            clip_config = "openai/clip-vit-large-patch14"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1412

1413
1414
1415
1416
        elif is_open_clip_model(checkpoint):
            clip_config = "stabilityai/stable-diffusion-2"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = "text_encoder"
1417

1418
1419
1420
1421
        else:
            clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
            config["pretrained_model_name_or_path"] = clip_config
            subfolder = ""
1422

1423
    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
1424
1425
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
1426
        model = cls(model_config)
1427

1428
    position_embedding_dim = model.text_model.embeddings.position_embedding.weight.shape[-1]
1429

1430
1431
    if is_clip_model(checkpoint):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1432

1433
1434
1435
1436
1437
    elif (
        is_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint)
1438

1439
1440
1441
1442
1443
1444
1445
    elif (
        is_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_l.transformer.")
        diffusers_format_checkpoint["text_projection.weight"] = torch.eye(position_embedding_dim)

1446
1447
1448
    elif is_open_clip_model(checkpoint):
        prefix = "cond_stage_model.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1449

1450
1451
1452
1453
1454
1455
    elif (
        is_open_clip_sdxl_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sdxl"]].shape[-1] == position_embedding_dim
    ):
        prefix = "conditioner.embedders.1.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1456

1457
1458
1459
    elif is_open_clip_sdxl_refiner_model(checkpoint):
        prefix = "conditioner.embedders.0.model."
        diffusers_format_checkpoint = convert_open_clip_checkpoint(model, checkpoint, prefix=prefix)
1460

1461
1462
1463
1464
1465
    elif (
        is_open_clip_sd3_model(checkpoint)
        and checkpoint[CHECKPOINT_KEY_NAMES["open_clip_sd3"]].shape[-1] == position_embedding_dim
    ):
        diffusers_format_checkpoint = convert_ldm_clip_checkpoint(checkpoint, "text_encoders.clip_g.transformer.")
Dhruv Nair's avatar
Dhruv Nair committed
1466

1467
    else:
1468
        raise ValueError("The provided checkpoint does not seem to contain a valid CLIP model.")
1469
1470

    if is_accelerate_available():
1471
        unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
1472
1473
    else:
        _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)
1474

1475
1476
1477
    if model._keys_to_ignore_on_load_unexpected is not None:
        for pat in model._keys_to_ignore_on_load_unexpected:
            unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
1478

1479
1480
1481
1482
    if len(unexpected_keys) > 0:
        logger.warning(
            f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
        )
1483

1484
    if torch_dtype is not None:
1485
        model.to(torch_dtype)
1486

1487
    model.eval()
1488

1489
    return model
1490

1491
1492
1493

def _legacy_load_scheduler(
    cls,
1494
    checkpoint,
1495
1496
1497
    component_name,
    original_config=None,
    **kwargs,
1498
):
1499
1500
    scheduler_type = kwargs.get("scheduler_type", None)
    prediction_type = kwargs.get("prediction_type", None)
1501

1502
1503
    if scheduler_type is not None:
        deprecation_message = (
1504
1505
1506
1507
1508
            "Please pass an instance of a Scheduler object directly to the `scheduler` argument in `from_single_file`\n\n"
            "Example:\n\n"
            "from diffusers import StableDiffusionPipeline, DDIMScheduler\n\n"
            "scheduler = DDIMScheduler()\n"
            "pipe = StableDiffusionPipeline.from_single_file(<checkpoint path>, scheduler=scheduler)\n"
1509
1510
        )
        deprecate("scheduler_type", "1.0.0", deprecation_message)
1511

1512
1513
    if prediction_type is not None:
        deprecation_message = (
1514
1515
1516
1517
1518
1519
            "Please configure an instance of a Scheduler with the appropriate `prediction_type` and "
            "pass the object directly to the `scheduler` argument in `from_single_file`.\n\n"
            "Example:\n\n"
            "from diffusers import StableDiffusionPipeline, DDIMScheduler\n\n"
            'scheduler = DDIMScheduler(prediction_type="v_prediction")\n'
            "pipe = StableDiffusionPipeline.from_single_file(<checkpoint path>, scheduler=scheduler)\n"
1520
1521
        )
        deprecate("prediction_type", "1.0.0", deprecation_message)
1522

1523
1524
    scheduler_config = SCHEDULER_DEFAULT_CONFIG
    model_type = infer_diffusers_model_type(checkpoint=checkpoint)
1525
1526
1527

    global_step = checkpoint["global_step"] if "global_step" in checkpoint else None

1528
1529
1530
1531
1532
    if original_config:
        num_train_timesteps = getattr(original_config["model"]["params"], "timesteps", 1000)
    else:
        num_train_timesteps = 1000

1533
1534
    scheduler_config["num_train_timesteps"] = num_train_timesteps

1535
    if model_type == "v2":
1536
        if prediction_type is None:
1537
            # NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"` # as it relies on a brittle global step parameter here
1538
1539
1540
1541
1542
1543
1544
            prediction_type = "epsilon" if global_step == 875000 else "v_prediction"

    else:
        prediction_type = prediction_type or "epsilon"

    scheduler_config["prediction_type"] = prediction_type

1545
    if model_type in ["xl_base", "xl_refiner"]:
1546
        scheduler_type = "euler"
1547
    elif model_type == "playground":
1548
        scheduler_type = "edm_dpm_solver_multistep"
1549
    else:
1550
1551
1552
1553
1554
1555
1556
1557
        if original_config:
            beta_start = original_config["model"]["params"].get("linear_start")
            beta_end = original_config["model"]["params"].get("linear_end")

        else:
            beta_start = 0.02
            beta_end = 0.085

1558
1559
1560
1561
1562
1563
        scheduler_config["beta_start"] = beta_start
        scheduler_config["beta_end"] = beta_end
        scheduler_config["beta_schedule"] = "scaled_linear"
        scheduler_config["clip_sample"] = False
        scheduler_config["set_alpha_to_one"] = False

1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
    # to deal with an edge case StableDiffusionUpscale pipeline has two schedulers
    if component_name == "low_res_scheduler":
        return cls.from_config(
            {
                "beta_end": 0.02,
                "beta_schedule": "scaled_linear",
                "beta_start": 0.0001,
                "clip_sample": True,
                "num_train_timesteps": 1000,
                "prediction_type": "epsilon",
                "trained_betas": None,
                "variance_type": "fixed_small",
            }
        )

    if scheduler_type is None:
        return cls.from_config(scheduler_config)

    elif scheduler_type == "pndm":
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
        scheduler_config["skip_prk_steps"] = True
        scheduler = PNDMScheduler.from_config(scheduler_config)

    elif scheduler_type == "lms":
        scheduler = LMSDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "heun":
        scheduler = HeunDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler":
        scheduler = EulerDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "euler-ancestral":
        scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)

    elif scheduler_type == "dpm":
        scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)

    elif scheduler_type == "ddim":
        scheduler = DDIMScheduler.from_config(scheduler_config)

1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
    elif scheduler_type == "edm_dpm_solver_multistep":
        scheduler_config = {
            "algorithm_type": "dpmsolver++",
            "dynamic_thresholding_ratio": 0.995,
            "euler_at_final": False,
            "final_sigmas_type": "zero",
            "lower_order_final": True,
            "num_train_timesteps": 1000,
            "prediction_type": "epsilon",
            "rho": 7.0,
            "sample_max_value": 1.0,
            "sigma_data": 0.5,
            "sigma_max": 80.0,
            "sigma_min": 0.002,
            "solver_order": 2,
            "solver_type": "midpoint",
            "thresholding": False,
        }
        scheduler = EDMDPMSolverMultistepScheduler(**scheduler_config)

1624
1625
1626
    else:
        raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")

1627
    return scheduler
1628
1629


1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
def _legacy_load_clip_tokenizer(cls, checkpoint, config=None, local_files_only=False):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    if is_clip_model(checkpoint) or is_clip_sdxl_model(checkpoint):
        clip_config = "openai/clip-vit-large-patch14"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    elif is_open_clip_model(checkpoint):
        clip_config = "stabilityai/stable-diffusion-2"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = "tokenizer"

    else:
        clip_config = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
        config["pretrained_model_name_or_path"] = clip_config
        subfolder = ""

    tokenizer = cls.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)

    return tokenizer


def _legacy_load_safety_checker(local_files_only, torch_dtype):
    # Support for loading safety checker components using the deprecated
    # `load_safety_checker` argument.

    from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker

    feature_extractor = AutoImageProcessor.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )
    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
    )

    return {"safety_checker": safety_checker, "feature_extractor": feature_extractor}
Dhruv Nair's avatar
Dhruv Nair committed
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679


# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight, dim):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight


Dhruv Nair's avatar
Dhruv Nair committed
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
def get_attn2_layers(state_dict):
    attn2_layers = []
    for key in state_dict.keys():
        if "attn2." in key:
            # Extract the layer number from the key
            layer_num = int(key.split(".")[1])
            attn2_layers.append(layer_num)

    return tuple(sorted(set(attn2_layers)))


def get_caption_projection_dim(state_dict):
    caption_projection_dim = state_dict["context_embedder.weight"].shape[0]
    return caption_projection_dim


Dhruv Nair's avatar
Dhruv Nair committed
1696
1697
1698
1699
1700
1701
1702
1703
def convert_sd3_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "joint_blocks" in k))[-1] + 1  # noqa: C401
Dhruv Nair's avatar
Dhruv Nair committed
1704
1705
1706
1707
    dual_attention_layers = get_attn2_layers(checkpoint)

    caption_projection_dim = get_caption_projection_dim(checkpoint)
    has_qk_norm = any("ln_q" in key for key in checkpoint.keys())
Dhruv Nair's avatar
Dhruv Nair committed
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763

    # Positional and patch embeddings.
    converted_state_dict["pos_embed.pos_embed"] = checkpoint.pop("pos_embed")
    converted_state_dict["pos_embed.proj.weight"] = checkpoint.pop("x_embedder.proj.weight")
    converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("x_embedder.proj.bias")

    # Timestep embeddings.
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("t_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("t_embedder.mlp.2.bias")

    # Context projections.
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("context_embedder.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("context_embedder.bias")

    # Pooled context projection.
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("y_embedder.mlp.0.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("y_embedder.mlp.0.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop("y_embedder.mlp.2.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("y_embedder.mlp.2.bias")

    # Transformer blocks 🎸.
    for i in range(num_layers):
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
        )
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
        )

        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])

        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])

Dhruv Nair's avatar
Dhruv Nair committed
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
        # qk norm
        if has_qk_norm:
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_q.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_k.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn.ln_k.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_q.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_k.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.ln_k.weight"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
        # output projections.
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.attn.proj.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.attn.proj.bias"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
        if i in dual_attention_layers:
            # Q, K, V
            sample_q2, sample_k2, sample_v2 = torch.chunk(
                checkpoint.pop(f"joint_blocks.{i}.x_block.attn2.qkv.weight"), 3, dim=0
            )
            sample_q2_bias, sample_k2_bias, sample_v2_bias = torch.chunk(
                checkpoint.pop(f"joint_blocks.{i}.x_block.attn2.qkv.bias"), 3, dim=0
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = torch.cat([sample_q2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = torch.cat([sample_q2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = torch.cat([sample_k2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = torch.cat([sample_k2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = torch.cat([sample_v2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = torch.cat([sample_v2_bias])

            # qk norm
            if has_qk_norm:
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_q.weight"] = checkpoint.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_q.weight"
                )
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_k.weight"] = checkpoint.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_k.weight"
                )

            # output projections.
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.bias"
            )

Dhruv Nair's avatar
Dhruv Nair committed
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
        # norms.
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
            )
        else:
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
                dim=caption_projection_dim,
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
                checkpoint.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
                dim=caption_projection_dim,
            )

        # ffs.
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.bias"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = checkpoint.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.bias"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = checkpoint.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.bias"
            )

    # Final blocks.
    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
    )

    return converted_state_dict


def is_t5_in_single_file(checkpoint):
    if "text_encoders.t5xxl.transformer.shared.weight" in checkpoint:
        return True

    return False


def convert_sd3_t5_checkpoint_to_diffusers(checkpoint):
    keys = list(checkpoint.keys())
    text_model_dict = {}

1901
    remove_prefixes = ["text_encoders.t5xxl.transformer."]
Dhruv Nair's avatar
Dhruv Nair committed
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944

    for key in keys:
        for prefix in remove_prefixes:
            if key.startswith(prefix):
                diffusers_key = key.replace(prefix, "")
                text_model_dict[diffusers_key] = checkpoint.get(key)

    return text_model_dict


def create_diffusers_t5_model_from_checkpoint(
    cls,
    checkpoint,
    subfolder="",
    config=None,
    torch_dtype=None,
    local_files_only=None,
):
    if config:
        config = {"pretrained_model_name_or_path": config}
    else:
        config = fetch_diffusers_config(checkpoint)

    model_config = cls.config_class.from_pretrained(**config, subfolder=subfolder, local_files_only=local_files_only)
    ctx = init_empty_weights if is_accelerate_available() else nullcontext
    with ctx():
        model = cls(model_config)

    diffusers_format_checkpoint = convert_sd3_t5_checkpoint_to_diffusers(checkpoint)

    if is_accelerate_available():
        unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
        if model._keys_to_ignore_on_load_unexpected is not None:
            for pat in model._keys_to_ignore_on_load_unexpected:
                unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
            )

    else:
        model.load_state_dict(diffusers_format_checkpoint)
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957

    use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (torch_dtype == torch.float16)
    if use_keep_in_fp32_modules:
        keep_in_fp32_modules = model._keep_in_fp32_modules
    else:
        keep_in_fp32_modules = []

    if keep_in_fp32_modules is not None:
        for name, param in model.named_parameters():
            if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
                # param = param.to(torch.float32) does not work here as only in the local scope.
                param.data = param.data.to(torch.float32)

1958
    return model
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977


def convert_animatediff_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
    for k, v in checkpoint.items():
        if "pos_encoder" in k:
            continue

        else:
            converted_state_dict[
                k.replace(".norms.0", ".norm1")
                .replace(".norms.1", ".norm2")
                .replace(".ff_norm", ".norm3")
                .replace(".attention_blocks.0", ".attn1")
                .replace(".attention_blocks.1", ".attn2")
                .replace(".temporal_transformer", "")
            ] = v

    return converted_state_dict
1978
1979
1980
1981


def convert_flux_transformer_checkpoint_to_diffusers(checkpoint, **kwargs):
    converted_state_dict = {}
1982
1983
1984
1985
    keys = list(checkpoint.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173

    num_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "double_blocks." in k))[-1] + 1  # noqa: C401
    num_single_layers = list(set(int(k.split(".", 2)[1]) for k in checkpoint if "single_blocks." in k))[-1] + 1  # noqa: C401
    mlp_ratio = 4.0
    inner_dim = 3072

    # in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
    # while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    ## time_text_embed.timestep_embedder <-  time_in
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = checkpoint.pop(
        "time_in.in_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = checkpoint.pop("time_in.in_layer.bias")
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = checkpoint.pop(
        "time_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = checkpoint.pop("time_in.out_layer.bias")

    ## time_text_embed.text_embedder <- vector_in
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = checkpoint.pop("vector_in.in_layer.weight")
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = checkpoint.pop("vector_in.in_layer.bias")
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = checkpoint.pop(
        "vector_in.out_layer.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = checkpoint.pop("vector_in.out_layer.bias")

    # guidance
    has_guidance = any("guidance" in k for k in checkpoint)
    if has_guidance:
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.weight"] = checkpoint.pop(
            "guidance_in.in_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_1.bias"] = checkpoint.pop(
            "guidance_in.in_layer.bias"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.weight"] = checkpoint.pop(
            "guidance_in.out_layer.weight"
        )
        converted_state_dict["time_text_embed.guidance_embedder.linear_2.bias"] = checkpoint.pop(
            "guidance_in.out_layer.bias"
        )

    # context_embedder
    converted_state_dict["context_embedder.weight"] = checkpoint.pop("txt_in.weight")
    converted_state_dict["context_embedder.bias"] = checkpoint.pop("txt_in.bias")

    # x_embedder
    converted_state_dict["x_embedder.weight"] = checkpoint.pop("img_in.weight")
    converted_state_dict["x_embedder.bias"] = checkpoint.pop("img_in.bias")

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."
        # norms.
        ## norm1
        converted_state_dict[f"{block_prefix}norm1.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_mod.lin.bias"
        )
        ## norm1_context
        converted_state_dict[f"{block_prefix}norm1_context.linear.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm1_context.linear.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mod.lin.bias"
        )
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.weight"), 3, dim=0)
        context_q, context_k, context_v = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.img_attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            checkpoint.pop(f"double_blocks.{i}.txt_attn.qkv.bias"), 3, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([sample_v_bias])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"{block_prefix}attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"{block_prefix}attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"{block_prefix}attn.add_v_proj.bias"] = torch.cat([context_v_bias])
        # qk_norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.norm.key_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
        )
        # ff img_mlp
        converted_state_dict[f"{block_prefix}ff.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff.net.0.proj.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.0.bias")
        converted_state_dict[f"{block_prefix}ff.net.2.weight"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.weight")
        converted_state_dict[f"{block_prefix}ff.net.2.bias"] = checkpoint.pop(f"double_blocks.{i}.img_mlp.2.bias")
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.0.proj.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.0.bias"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.weight"
        )
        converted_state_dict[f"{block_prefix}ff_context.net.2.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_mlp.2.bias"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}attn.to_out.0.weight"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_out.0.bias"] = checkpoint.pop(
            f"double_blocks.{i}.img_attn.proj.bias"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.weight"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.weight"
        )
        converted_state_dict[f"{block_prefix}attn.to_add_out.bias"] = checkpoint.pop(
            f"double_blocks.{i}.txt_attn.proj.bias"
        )

    # single transfomer blocks
    for i in range(num_single_layers):
        block_prefix = f"single_transformer_blocks.{i}."
        # norm.linear  <- single_blocks.0.modulation.lin
        converted_state_dict[f"{block_prefix}norm.linear.weight"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.weight"
        )
        converted_state_dict[f"{block_prefix}norm.linear.bias"] = checkpoint.pop(
            f"single_blocks.{i}.modulation.lin.bias"
        )
        # Q, K, V, mlp
        mlp_hidden_dim = int(inner_dim * mlp_ratio)
        split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
        q, k, v, mlp = torch.split(checkpoint.pop(f"single_blocks.{i}.linear1.weight"), split_size, dim=0)
        q_bias, k_bias, v_bias, mlp_bias = torch.split(
            checkpoint.pop(f"single_blocks.{i}.linear1.bias"), split_size, dim=0
        )
        converted_state_dict[f"{block_prefix}attn.to_q.weight"] = torch.cat([q])
        converted_state_dict[f"{block_prefix}attn.to_q.bias"] = torch.cat([q_bias])
        converted_state_dict[f"{block_prefix}attn.to_k.weight"] = torch.cat([k])
        converted_state_dict[f"{block_prefix}attn.to_k.bias"] = torch.cat([k_bias])
        converted_state_dict[f"{block_prefix}attn.to_v.weight"] = torch.cat([v])
        converted_state_dict[f"{block_prefix}attn.to_v.bias"] = torch.cat([v_bias])
        converted_state_dict[f"{block_prefix}proj_mlp.weight"] = torch.cat([mlp])
        converted_state_dict[f"{block_prefix}proj_mlp.bias"] = torch.cat([mlp_bias])
        # qk norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = checkpoint.pop(
            f"single_blocks.{i}.norm.key_norm.scale"
        )
        # output projections.
        converted_state_dict[f"{block_prefix}proj_out.weight"] = checkpoint.pop(f"single_blocks.{i}.linear2.weight")
        converted_state_dict[f"{block_prefix}proj_out.bias"] = checkpoint.pop(f"single_blocks.{i}.linear2.bias")

    converted_state_dict["proj_out.weight"] = checkpoint.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = checkpoint.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.weight")
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        checkpoint.pop("final_layer.adaLN_modulation.1.bias")
    )

    return converted_state_dict