test_pipelines_common.py 23.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import contextlib
import gc
import inspect
import io
import re
import tempfile
import unittest
from typing import Callable, Union

import numpy as np
import torch

13
import diffusers
14
from diffusers import DiffusionPipeline
15
from diffusers.utils import logging
16
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available
17
18
19
20
from diffusers.utils.testing_utils import require_torch, torch_device


torch.backends.cuda.matmul.allow_tf32 = False
21
22


23
24
25
26
27
28
29
def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


30
31
32
33
34
35
36
37
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
            "callback",
            "callback_steps",
        ]
    )
53

54
55
56
57
58
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
    test_cpu_offload = True
    test_xformers_attention = True

59
60
61
62
63
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
            " You can set `params` using one of the common set of parameters defined in`pipeline_params.py`"
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_save_load_local(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

136
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
137
138
        self.assertLess(max_diff, 1e-4)

139
140
141
142
143
    def test_pipeline_call_signature(self):
        self.assertTrue(
            hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        )

144
145
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        optional_parameters = set()

        for k, v in parameters.items():
            if v.default != inspect._empty:
                optional_parameters.add(k)

        parameters = set(parameters.keys())
        parameters.remove("self")
        parameters.discard("kwargs")  # kwargs can be added if arguments of pipeline call function are deprecated

        remaining_required_parameters = set()

        for param in self.params:
            if param not in parameters:
                remaining_required_parameters.add(param)
161

162
163
164
165
166
167
        self.assertTrue(
            len(remaining_required_parameters) == 0,
            f"Required parameters not present: {remaining_required_parameters}",
        )

        remaining_required_optional_parameters = set()
168

169
        for param in self.required_optional_params:
170
171
172
173
174
175
176
            if param not in optional_parameters:
                remaining_required_optional_parameters.add(param)

        self.assertTrue(
            len(remaining_required_optional_parameters) == 0,
            f"Required optional parameters not present: {remaining_required_optional_parameters}",
        )
177

178
179
    def test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes)
180

181
182
183
    def _test_inference_batch_consistent(
        self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"]
    ):
184
185
186
187
188
189
190
191
192
193
194
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
195
        for batch_size in batch_sizes:
196
197
            batched_inputs = {}
            for name, value in inputs.items():
198
                if name in self.batch_params:
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                    # prompt is string
                    if name == "prompt":
                        len_prompt = len(value)
                        # make unequal batch sizes
                        batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                        # make last batch super long
                        batched_inputs[name][-1] = 2000 * "very long"
                    # or else we have images
                    else:
                        batched_inputs[name] = batch_size * [value]
                elif name == "batch_size":
                    batched_inputs[name] = batch_size
                else:
                    batched_inputs[name] = value

215
            for arg in additional_params_copy_to_batched_inputs:
216
217
                batched_inputs[arg] = inputs[arg]

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            batched_inputs["output_type"] = None

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)

            assert len(output[0]) == batch_size

            batched_inputs["output_type"] = "np"

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)[0]

            assert output.shape[0] == batch_size

        logger.setLevel(level=diffusers.logging.WARNING)
237

238
239
    def test_inference_batch_single_identical(self, batch_size=3):
        self._test_inference_batch_single_identical(batch_size=batch_size)
240
241

    def _test_inference_batch_single_identical(
242
        self,
243
        batch_size=3,
244
245
246
        test_max_difference=None,
        test_mean_pixel_difference=None,
        relax_max_difference=False,
247
        expected_max_diff=1e-4,
248
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
249
250
251
252
253
254
255
256
257
258
    ):
        if test_max_difference is None:
            # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
            # make sure that batched and non-batched is identical
            test_max_difference = torch_device != "mps"

        if test_mean_pixel_difference is None:
            # TODO same as above
            test_mean_pixel_difference = torch_device != "mps"

259
260
261
262
263
264
265
266
267
268
269
270
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
271
        batch_size = batch_size
272
        for name, value in inputs.items():
273
            if name in self.batch_params:
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                # prompt is string
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_inputs[name][-1] = 2000 * "very long"
                # or else we have images
                else:
                    batched_inputs[name] = batch_size * [value]
            elif name == "batch_size":
                batched_inputs[name] = batch_size
            elif name == "generator":
                batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
            else:
                batched_inputs[name] = value

292
        for arg in additional_params_copy_to_batched_inputs:
293
            batched_inputs[arg] = inputs[arg]
294
295
296
297
298
299
300
301
302
303
304

        if self.pipeline_class.__name__ != "DanceDiffusionPipeline":
            batched_inputs["output_type"] = "np"

        output_batch = pipe(**batched_inputs)
        assert output_batch[0].shape[0] == batch_size

        inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)

305
        logger.setLevel(level=diffusers.logging.WARNING)
306
307
308
309
310
        if test_max_difference:
            if relax_max_difference:
                # Taking the median of the largest <n> differences
                # is resilient to outliers
                diff = np.abs(output_batch[0][0] - output[0][0])
Will Berman's avatar
Will Berman committed
311
                diff = diff.flatten()
312
313
314
315
                diff.sort()
                max_diff = np.median(diff[-5:])
            else:
                max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
316
            assert max_diff < expected_max_diff
317
318
319

        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_batch[0][0], output[0][0])
320

321
322
323
324
325
326
327
328
329
    def test_dict_tuple_outputs_equivalent(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]

330
        max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
331
        self.assertLess(max_diff, 1e-4)
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    def test_components_function(self):
        init_components = self.get_dummy_components()
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_float16_inference(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe_fp16 = self.pipeline_class(**components)
348
        pipe_fp16.to(torch_device, torch.float16)
349
350
351
352
353
        pipe_fp16.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]

354
        max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        self.assertLess(max_diff, 1e-2, "The outputs of the fp16 and fp32 pipelines are too different.")

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_save_load_float16(self):
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
372
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
373
374
375
376
377
378
379
380
381
382
383
384
385
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

386
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
Patrick von Platen's avatar
Patrick von Platen committed
387
        self.assertLess(max_diff, 1e-2, "The output of the fp16 pipeline changed after saving and loading.")
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

    def test_save_load_optional_components(self):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

420
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
421
        self.assertLess(max_diff, 1e-4)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
441
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
442

443
444
445
446
447
448
449
450
451
452
453
454
    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

        pipe.to(torch_dtype=torch.float16)
        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

455
    def test_attention_slicing_forward_pass(self):
456
457
        self._test_attention_slicing_forward_pass()

458
459
460
    def _test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        if not self.test_attention_slicing:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
        inputs = self.get_dummy_inputs(torch_device)
        output_with_slicing = pipe(**inputs)[0]

476
        if test_max_difference:
477
            max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max()
478
            self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results")
479

480
481
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0])
482
483

    @unittest.skipIf(
484
485
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    )
    def test_cpu_offload_forward_pass(self):
        if not self.test_cpu_offload:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

503
        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
504
        self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
505
506
507
508
509

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
510
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
511
512
        self._test_xformers_attention_forwardGenerator_pass()

513
    def _test_xformers_attention_forwardGenerator_pass(self, test_max_difference=True, expected_max_diff=1e-4):
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

Will Berman's avatar
Will Berman committed
529
530
        if test_max_difference:
            max_diff = np.abs(output_with_offload - output_without_offload).max()
531
            self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
Will Berman's avatar
Will Berman committed
532
533

        assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    def test_num_images_per_prompt(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "num_images_per_prompt" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images

                assert images.shape[0] == batch_size * num_images_per_prompt

583
584
585
586
587
588
589
590
591

# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
def assert_mean_pixel_difference(image, expected_image):
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
    assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average"