test_pipelines_common.py 21.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import contextlib
import gc
import inspect
import io
import re
import tempfile
import unittest
from typing import Callable, Union

import numpy as np
import torch

13
import diffusers
14
15
16
17
from diffusers import (
    CycleDiffusionPipeline,
    DanceDiffusionPipeline,
    DiffusionPipeline,
anton-'s avatar
anton- committed
18
    RePaintPipeline,
19
20
21
    StableDiffusionDepth2ImgPipeline,
    StableDiffusionImg2ImgPipeline,
)
22
from diffusers.utils import logging
23
24
25
26
27
from diffusers.utils.import_utils import is_accelerate_available, is_xformers_available
from diffusers.utils.testing_utils import require_torch, torch_device


torch.backends.cuda.matmul.allow_tf32 = False
28
29
30
31
32
33
34
35
36
37


@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

YiYi Xu's avatar
YiYi Xu committed
38
39
40
41
42
43
44
45
46
    allowed_required_args = [
        "source_prompt",
        "prompt",
        "image",
        "mask_image",
        "example_image",
        "class_labels",
        "token_indices",
    ]
47
48
49
    required_optional_params = ["generator", "num_inference_steps", "return_dict"]
    num_inference_steps_args = ["num_inference_steps"]

50
51
52
53
54
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
    test_cpu_offload = True
    test_xformers_attention = True

55
56
57
58
59
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_save_load_local(self):
        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
89
            RePaintPipeline,
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        self.assertLess(max_diff, 1e-4)

    def test_pipeline_call_implements_required_args(self):
        assert hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        parameters = inspect.signature(self.pipeline_class.__call__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        required_parameters.pop("self")
        required_parameters = set(required_parameters)
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})

        for param in required_parameters:
            if param == "kwargs":
                # kwargs can be added if arguments of pipeline call function are deprecated
                continue
131
            assert param in self.allowed_required_args
132
133
134

        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})

135
        for param in self.required_optional_params:
136
137
138
            assert param in optional_parameters

    def test_inference_batch_consistent(self):
139
140
141
        self._test_inference_batch_consistent()

    def _test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]):
142
143
144
145
146
147
148
149
150
151
152
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
153
        for batch_size in batch_sizes:
154
155
            batched_inputs = {}
            for name, value in inputs.items():
156
                if name in self.allowed_required_args:
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
                    # prompt is string
                    if name == "prompt":
                        len_prompt = len(value)
                        # make unequal batch sizes
                        batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                        # make last batch super long
                        batched_inputs[name][-1] = 2000 * "very long"
                    # or else we have images
                    else:
                        batched_inputs[name] = batch_size * [value]
                elif name == "batch_size":
                    batched_inputs[name] = batch_size
                else:
                    batched_inputs[name] = value

173
174
175
            for arg in self.num_inference_steps_args:
                batched_inputs[arg] = inputs[arg]

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
            batched_inputs["output_type"] = None

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)

            assert len(output[0]) == batch_size

            batched_inputs["output_type"] = "np"

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)[0]

            assert output.shape[0] == batch_size

        logger.setLevel(level=diffusers.logging.WARNING)
195

196
    def test_inference_batch_single_identical(self):
197
198
199
200
201
        self._test_inference_batch_single_identical()

    def _test_inference_batch_single_identical(
        self, test_max_difference=None, test_mean_pixel_difference=None, relax_max_difference=False
    ):
202
203
204
205
206
        if self.pipeline_class.__name__ in [
            "CycleDiffusionPipeline",
            "RePaintPipeline",
            "StableDiffusionPix2PixZeroPipeline",
        ]:
207
            # RePaint can hardly be made deterministic since the scheduler is currently always
Kashif Rasul's avatar
Kashif Rasul committed
208
209
            # nondeterministic
            # CycleDiffusion is also slightly nondeterministic
210
211
            # There's a training loop inside Pix2PixZero and is guided by edit directions. This is
            # why the slight non-determinism.
212
213
            return

214
215
216
217
218
219
220
221
222
        if test_max_difference is None:
            # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
            # make sure that batched and non-batched is identical
            test_max_difference = torch_device != "mps"

        if test_mean_pixel_difference is None:
            # TODO same as above
            test_mean_pixel_difference = torch_device != "mps"

223
224
225
226
227
228
229
230
231
232
233
234
235
236
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batch_size = 3
        for name, value in inputs.items():
237
            if name in self.allowed_required_args:
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                # prompt is string
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_inputs[name][-1] = 2000 * "very long"
                # or else we have images
                else:
                    batched_inputs[name] = batch_size * [value]
            elif name == "batch_size":
                batched_inputs[name] = batch_size
            elif name == "generator":
                batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
            else:
                batched_inputs[name] = value

256
257
        for arg in self.num_inference_steps_args:
            batched_inputs[arg] = inputs[arg]
258
259
260
261
262
263
264
265
266
267
268

        if self.pipeline_class.__name__ != "DanceDiffusionPipeline":
            batched_inputs["output_type"] = "np"

        output_batch = pipe(**batched_inputs)
        assert output_batch[0].shape[0] == batch_size

        inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)

269
        logger.setLevel(level=diffusers.logging.WARNING)
270
271
272
273
274
        if test_max_difference:
            if relax_max_difference:
                # Taking the median of the largest <n> differences
                # is resilient to outliers
                diff = np.abs(output_batch[0][0] - output[0][0])
Will Berman's avatar
Will Berman committed
275
                diff = diff.flatten()
276
277
278
279
280
281
282
283
                diff.sort()
                max_diff = np.median(diff[-5:])
            else:
                max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
            assert max_diff < 1e-4

        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_batch[0][0], output[0][0])
284

285
286
287
288
    def test_dict_tuple_outputs_equivalent(self):
        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
289
            RePaintPipeline,
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]

        max_diff = np.abs(output - output_tuple).max()
308
        self.assertLess(max_diff, 1e-4)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

    def test_components_function(self):
        init_components = self.get_dummy_components()
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_float16_inference(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe_fp16 = self.pipeline_class(**components)
        pipe_fp16.to(torch_device)
        pipe_fp16.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]

        max_diff = np.abs(output - output_fp16).max()
        self.assertLess(max_diff, 1e-2, "The outputs of the fp16 and fp32 pipelines are too different.")

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_save_load_float16(self):
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
352
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
        self.assertLess(max_diff, 3e-3, "The output of the fp16 pipeline changed after saving and loading.")

    def test_save_load_optional_components(self):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
376
            RePaintPipeline,
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
414
        self.assertLess(max_diff, 1e-4)
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
        self.assertTrue(np.isnan(output_cuda).sum() == 0)

    def test_attention_slicing_forward_pass(self):
437
438
439
        self._test_attention_slicing_forward_pass()

    def _test_attention_slicing_forward_pass(self, test_max_difference=True):
440
441
442
443
444
445
        if not self.test_attention_slicing:
            return

        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
446
            RePaintPipeline,
447
            StableDiffusionImg2ImgPipeline,
448
            StableDiffusionDepth2ImgPipeline,
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        inputs = self.get_dummy_inputs(torch_device)
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
        inputs = self.get_dummy_inputs(torch_device)
        output_with_slicing = pipe(**inputs)[0]

469
470
471
472
473
        if test_max_difference:
            max_diff = np.abs(output_with_slicing - output_without_slicing).max()
            self.assertLess(max_diff, 1e-3, "Attention slicing should not affect the inference results")

        assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0])
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available(),
        reason="CPU offload is only available with CUDA and `accelerate` installed",
    )
    def test_cpu_offload_forward_pass(self):
        if not self.test_cpu_offload:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(output_with_offload - output_without_offload).max()
496
        self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
497
498
499
500
501

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
502
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
503
504
505
        self._test_xformers_attention_forwardGenerator_pass()

    def _test_xformers_attention_forwardGenerator_pass(self, test_max_difference=True):
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

Will Berman's avatar
Will Berman committed
521
522
523
524
525
        if test_max_difference:
            max_diff = np.abs(output_with_offload - output_without_offload).max()
            self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")

        assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
548
549
550
551
552
553
554
555
556
557


# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
def assert_mean_pixel_difference(image, expected_image):
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
    assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average"