test_pipelines_common.py 21.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import contextlib
import gc
import inspect
import io
import re
import tempfile
import time
import unittest
from typing import Callable, Union

import numpy as np
import torch

14
import diffusers
15
16
17
18
from diffusers import (
    CycleDiffusionPipeline,
    DanceDiffusionPipeline,
    DiffusionPipeline,
anton-'s avatar
anton- committed
19
    RePaintPipeline,
20
21
22
    StableDiffusionDepth2ImgPipeline,
    StableDiffusionImg2ImgPipeline,
)
23
from diffusers.utils import logging
24
25
26
27
28
from diffusers.utils.import_utils import is_accelerate_available, is_xformers_available
from diffusers.utils.testing_utils import require_torch, torch_device


torch.backends.cuda.matmul.allow_tf32 = False
29
30
31
32
33
34
35
36
37
38


@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

Kashif Rasul's avatar
Kashif Rasul committed
39
    allowed_required_args = ["source_prompt", "prompt", "image", "mask_image", "example_image", "class_labels"]
40
41
42
    required_optional_params = ["generator", "num_inference_steps", "return_dict"]
    num_inference_steps_args = ["num_inference_steps"]

43
44
45
46
47
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
    test_cpu_offload = True
    test_xformers_attention = True

48
49
50
51
52
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_save_load_local(self):
        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
82
            RePaintPipeline,
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        self.assertLess(max_diff, 1e-4)

    def test_pipeline_call_implements_required_args(self):
        assert hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        parameters = inspect.signature(self.pipeline_class.__call__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        required_parameters.pop("self")
        required_parameters = set(required_parameters)
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})

        for param in required_parameters:
            if param == "kwargs":
                # kwargs can be added if arguments of pipeline call function are deprecated
                continue
124
            assert param in self.allowed_required_args
125
126
127

        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})

128
        for param in self.required_optional_params:
129
130
131
            assert param in optional_parameters

    def test_inference_batch_consistent(self):
132
133
134
        self._test_inference_batch_consistent()

    def _test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]):
135
136
137
138
139
140
141
142
143
144
145
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
146
        for batch_size in batch_sizes:
147
148
            batched_inputs = {}
            for name, value in inputs.items():
149
                if name in self.allowed_required_args:
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
                    # prompt is string
                    if name == "prompt":
                        len_prompt = len(value)
                        # make unequal batch sizes
                        batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                        # make last batch super long
                        batched_inputs[name][-1] = 2000 * "very long"
                    # or else we have images
                    else:
                        batched_inputs[name] = batch_size * [value]
                elif name == "batch_size":
                    batched_inputs[name] = batch_size
                else:
                    batched_inputs[name] = value

166
167
168
            for arg in self.num_inference_steps_args:
                batched_inputs[arg] = inputs[arg]

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
            batched_inputs["output_type"] = None

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)

            assert len(output[0]) == batch_size

            batched_inputs["output_type"] = "np"

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)[0]

            assert output.shape[0] == batch_size

        logger.setLevel(level=diffusers.logging.WARNING)
188

189
    def test_inference_batch_single_identical(self):
190
191
192
193
194
        self._test_inference_batch_single_identical()

    def _test_inference_batch_single_identical(
        self, test_max_difference=None, test_mean_pixel_difference=None, relax_max_difference=False
    ):
195
196
        if self.pipeline_class.__name__ in ["CycleDiffusionPipeline", "RePaintPipeline"]:
            # RePaint can hardly be made deterministic since the scheduler is currently always
Kashif Rasul's avatar
Kashif Rasul committed
197
198
            # nondeterministic
            # CycleDiffusion is also slightly nondeterministic
199
200
            return

201
202
203
204
205
206
207
208
209
        if test_max_difference is None:
            # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
            # make sure that batched and non-batched is identical
            test_max_difference = torch_device != "mps"

        if test_mean_pixel_difference is None:
            # TODO same as above
            test_mean_pixel_difference = torch_device != "mps"

210
211
212
213
214
215
216
217
218
219
220
221
222
223
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batch_size = 3
        for name, value in inputs.items():
224
            if name in self.allowed_required_args:
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
                # prompt is string
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_inputs[name][-1] = 2000 * "very long"
                # or else we have images
                else:
                    batched_inputs[name] = batch_size * [value]
            elif name == "batch_size":
                batched_inputs[name] = batch_size
            elif name == "generator":
                batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
            else:
                batched_inputs[name] = value

243
244
        for arg in self.num_inference_steps_args:
            batched_inputs[arg] = inputs[arg]
245
246
247
248
249
250
251
252
253
254
255

        if self.pipeline_class.__name__ != "DanceDiffusionPipeline":
            batched_inputs["output_type"] = "np"

        output_batch = pipe(**batched_inputs)
        assert output_batch[0].shape[0] == batch_size

        inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)

256
        logger.setLevel(level=diffusers.logging.WARNING)
257
258
259
260
261
262
263
264
265
266
267
268
269
        if test_max_difference:
            if relax_max_difference:
                # Taking the median of the largest <n> differences
                # is resilient to outliers
                diff = np.abs(output_batch[0][0] - output[0][0])
                diff.sort()
                max_diff = np.median(diff[-5:])
            else:
                max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
            assert max_diff < 1e-4

        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_batch[0][0], output[0][0])
270

271
272
273
274
    def test_dict_tuple_outputs_equivalent(self):
        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
275
            RePaintPipeline,
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]

        max_diff = np.abs(output - output_tuple).max()
294
        self.assertLess(max_diff, 1e-4)
295
296
297
298
299
300
301
302
303
304
305
306
307

    def test_num_inference_steps_consistent(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        outputs = []
        times = []
308
        for num_steps in [9, 6, 3]:
309
            inputs = self.get_dummy_inputs(torch_device)
310
311
312

            for arg in self.num_inference_steps_args:
                inputs[arg] = num_steps
313
314
315
316
317
318
319
320
321
322
323

            start_time = time.time()
            output = pipe(**inputs)[0]
            inference_time = time.time() - start_time

            outputs.append(output)
            times.append(inference_time)

        # check that all outputs have the same shape
        self.assertTrue(all(outputs[0].shape == output.shape for output in outputs))
        # check that the inference time increases with the number of inference steps
324
        self.assertTrue(all(times[i] < times[i - 1] for i in range(1, len(times))))
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    def test_components_function(self):
        init_components = self.get_dummy_components()
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_float16_inference(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe_fp16 = self.pipeline_class(**components)
        pipe_fp16.to(torch_device)
        pipe_fp16.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]

        max_diff = np.abs(output - output_fp16).max()
        self.assertLess(max_diff, 1e-2, "The outputs of the fp16 and fp32 pipelines are too different.")

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_save_load_float16(self):
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
368
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
        self.assertLess(max_diff, 3e-3, "The output of the fp16 pipeline changed after saving and loading.")

    def test_save_load_optional_components(self):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
392
            RePaintPipeline,
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
430
        self.assertLess(max_diff, 1e-4)
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
        self.assertTrue(np.isnan(output_cuda).sum() == 0)

    def test_attention_slicing_forward_pass(self):
453
454
455
        self._test_attention_slicing_forward_pass()

    def _test_attention_slicing_forward_pass(self, test_max_difference=True):
456
457
458
459
460
461
        if not self.test_attention_slicing:
            return

        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
462
            RePaintPipeline,
463
            StableDiffusionImg2ImgPipeline,
464
            StableDiffusionDepth2ImgPipeline,
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        inputs = self.get_dummy_inputs(torch_device)
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
        inputs = self.get_dummy_inputs(torch_device)
        output_with_slicing = pipe(**inputs)[0]

485
486
487
488
489
        if test_max_difference:
            max_diff = np.abs(output_with_slicing - output_without_slicing).max()
            self.assertLess(max_diff, 1e-3, "Attention slicing should not affect the inference results")

        assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0])
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available(),
        reason="CPU offload is only available with CUDA and `accelerate` installed",
    )
    def test_cpu_offload_forward_pass(self):
        if not self.test_cpu_offload:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(output_with_offload - output_without_offload).max()
512
        self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
513
514
515
516
517

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
518
    def test_xformers_attention_forwardGenerator_pass(self):
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(output_with_offload - output_without_offload).max()
535
        self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
558
559
560
561
562
563
564
565
566
567


# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
def assert_mean_pixel_difference(image, expected_image):
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
    assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average"