scheduling_ddpm.py 6.2 KB
Newer Older
1
# Copyright 2022 UC Berkely Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
Patrick von Platen's avatar
Patrick von Platen committed
18

Patrick von Platen's avatar
Patrick von Platen committed
19
import numpy as np
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
from ..configuration_utils import ConfigMixin
22
23
24
25
26
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
27
28
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
29

Patrick von Platen's avatar
Patrick von Platen committed
30
31
32
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
33
34
35
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
36

37
38
39
40
41
42
43
44
45
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
46
47


Patrick von Platen's avatar
Patrick von Platen committed
48
class DDPMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
49
50
51
52
53
54
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
55
56
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
57
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
58
        clip_sample=True,
Patrick von Platen's avatar
Patrick von Platen committed
59
        tensor_format="np",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
60
61
    ):
        super().__init__()
62
        self.register_to_config(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
63
64
65
66
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
67
68
            trained_betas=trained_betas,
            timestep_values=timestep_values,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
69
            variance_type=variance_type,
Patrick von Platen's avatar
Patrick von Platen committed
70
            clip_sample=clip_sample,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
71
72
        )

73
74
75
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
76
            self.betas = np.linspace(beta_start, beta_end, timesteps, dtype=np.float32)
anton-l's avatar
anton-l committed
77
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
78
            # Glide cosine schedule
79
            self.betas = betas_for_alpha_bar(timesteps)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
80
81
82
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
87
88
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

89
    def get_variance(self, t, variance_type=None):
90
91
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
92

Kashif Rasul's avatar
Kashif Rasul committed
93
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
94
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
95
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
96
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
97

98
99
100
        if variance_type is None:
            variance_type = self.config.variance_type

Patrick von Platen's avatar
Patrick von Platen committed
101
        # hacks - were probs added for training stability
102
        if variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
103
            variance = self.clip(variance, min_value=1e-20)
104
        # for rl-diffuser https://arxiv.org/abs/2205.09991
105
        elif variance_type == "fixed_small_log":
106
            variance = self.log(self.clip(variance, min_value=1e-20))
107
        elif variance_type == "fixed_large":
108
            variance = self.betas[t]
109
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
110
            # Glide max_log
111
            variance = self.log(self.betas[t])
Patrick von Platen's avatar
Patrick von Platen committed
112
113
114

        return variance

115
    def step(self, residual, sample, t, predict_epsilon=True):
Patrick von Platen's avatar
Patrick von Platen committed
116
        # 1. compute alphas, betas
117
118
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
119
120
121
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

122
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
123
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
124
125
126
127
        if predict_epsilon:
            pred_original_sample = (sample - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
        else:
            pred_original_sample = residual
Patrick von Platen's avatar
Patrick von Platen committed
128
129

        # 3. Clip "predicted x_0"
130
        if self.config.clip_sample:
131
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
132

133
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
134
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
135
136
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
137

138
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
139
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
140
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
141

142
        return pred_prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
143

144
    def add_noise(self, original_samples, noise, timesteps):
anton-l's avatar
anton-l committed
145
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
146
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
anton-l's avatar
anton-l committed
147
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
148
149
150
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
151
        return noisy_samples
anton-l's avatar
anton-l committed
152

Patrick von Platen's avatar
improve  
Patrick von Platen committed
153
    def __len__(self):
154
        return self.config.timesteps