scheduling_dpmsolver_sde.py 32 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
from dataclasses import dataclass
17
from typing import List, Literal, Optional, Tuple, Union
18
19
20
21
22
23

import numpy as np
import torch
import torchsde

from ..configuration_utils import ConfigMixin, register_to_config
24
25
from ..utils import BaseOutput, is_scipy_available
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
27


28
29
30
31
if is_scipy_available():
    import scipy.stats


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DPMSolverSDE
class DPMSolverSDESchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class BatchedBrownianTree:
    """A wrapper around torchsde.BrownianTree that enables batches of entropy."""

    def __init__(self, x, t0, t1, seed=None, **kwargs):
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get("w0", torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2**63 - 1, []).item()
        self.batched = True
        try:
            assert len(seed) == x.shape[0]
            w0 = w0[0]
        except TypeError:
            seed = [seed]
            self.batched = False
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        self.trees = [
            torchsde.BrownianInterval(
                t0=t0,
                t1=t1,
                size=w0.shape,
                dtype=w0.dtype,
                device=w0.device,
                entropy=s,
                tol=1e-6,
                pool_size=24,
                halfway_tree=True,
            )
            for s in seed
        ]
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    @staticmethod
    def sort(a, b):
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """A noise sampler backed by a torchsde.BrownianTree.

    Args:
        x (Tensor): The tensor whose shape, device and dtype to use to generate
            random samples.
        sigma_min (float): The low end of the valid interval.
        sigma_max (float): The high end of the valid interval.
        seed (int or List[int]): The random seed. If a list of seeds is
            supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each
            with its own seed.
        transform (callable): A function that maps sigma to the sampler's
            internal timestep.
    """

    def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
        self.transform = transform
        t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
        self.tree = BatchedBrownianTree(x, t0, t1, seed)

    def __call__(self, sigma, sigma_next):
        t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
117
def betas_for_alpha_bar(
118
119
120
121
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
122
123
124
125
126
127
128
129
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
130
131
132
133
134
135
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
136
137

    Returns:
138
139
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
140
    """
YiYi Xu's avatar
YiYi Xu committed
141
    if alpha_transform_type == "cosine":
142

YiYi Xu's avatar
YiYi Xu committed
143
144
145
146
147
148
149
150
151
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
152
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
153
154
155
156
157

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
158
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
159
160
161
162
163
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
    """
164
165
    DPMSolverSDEScheduler implements the stochastic sampler from the [Elucidating the Design Space of Diffusion-Based
    Generative Models](https://huggingface.co/papers/2206.00364) paper.
166

167
168
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
169
170

    Args:
171
172
173
174
175
176
177
178
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.00085):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.012):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
179
            `linear` or `scaled_linear`.
180
181
182
183
184
185
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
186
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
187
188
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
189
190
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
191
192
193
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
194
        noise_sampler_seed (`int`, *optional*, defaults to `None`):
195
196
197
198
199
            The random seed to use for the noise sampler. If `None`, a random seed is generated.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
200
            An offset added to the inference steps, as required by some model families.
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        prediction_type: str = "epsilon",
        use_karras_sigmas: Optional[bool] = False,
216
        use_exponential_sigmas: Optional[bool] = False,
217
        use_beta_sigmas: Optional[bool] = False,
218
        noise_sampler_seed: Optional[int] = None,
219
220
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
221
    ):
222
223
224
225
226
227
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
228
229
230
231
232
233
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
234
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
235
236
237
238
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
239
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
240
241
242
243
244
245
246
247
248

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
        self.use_karras_sigmas = use_karras_sigmas
        self.noise_sampler = None
        self.noise_sampler_seed = noise_sampler_seed
249
        self._step_index = None
250
        self._begin_index = None
251
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
252

253
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def index_for_timestep(
        self, timestep: Union[float, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
    ) -> int:
        """
        Find the index of a given timestep in the timestep schedule.

        Args:
            timestep (`float` or `torch.Tensor`):
                The timestep value to find in the schedule.
            schedule_timesteps (`torch.Tensor`, *optional*):
                The timestep schedule to search in. If `None`, uses `self.timesteps`.

        Returns:
            `int`:
                The index of the timestep in the schedule. For the very first step, returns the second index if
                multiple matches exist to avoid skipping a sigma when starting mid-schedule (e.g., for image-to-image).
        """
271
272
273
274
275
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
276
277
278
279
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
280
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
281

282
283
        return indices[pos].item()

284
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
285
286
287
288
289
290
291
292
    def _init_step_index(self, timestep: Union[float, torch.Tensor]) -> None:
        """
        Initialize the step index for the scheduler based on the given timestep.

        Args:
            timestep (`float` or `torch.Tensor`):
                The current timestep to initialize the step index from.
        """
293
294
295
296
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
297
        else:
298
            self._step_index = self._begin_index
299

300
301
302
303
304
305
306
307
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

308
309
310
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
311
        The index counter for current timestep. It will increase 1 after each scheduler step.
312
313
314
        """
        return self._step_index

315
316
317
318
319
320
321
322
323
324
325
326
327
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
328
            begin_index (`int`, defaults to `0`):
329
330
331
332
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

333
334
    def scale_model_input(
        self,
335
336
337
        sample: torch.Tensor,
        timestep: Union[float, torch.Tensor],
    ) -> torch.Tensor:
338
339
340
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
341
342

        Args:
343
            sample (`torch.Tensor`):
344
345
346
347
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

348
        Returns:
349
            `torch.Tensor`:
350
                A scaled input sample.
351
        """
352
353
        if self.step_index is None:
            self._init_step_index(timestep)
354

355
        sigma = self.sigmas[self.step_index]
356
357
358
359
360
361
362
363
364
365
366
        sigma_input = sigma if self.state_in_first_order else self.mid_point_sigma
        sample = sample / ((sigma_input**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
367
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
368
369
370

        Args:
            num_inference_steps (`int`):
371
372
373
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
374
375
376
377
378
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

Quentin Gallouédec's avatar
Quentin Gallouédec committed
379
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
398
399
400
401
402

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        log_sigmas = np.log(sigmas)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)

403
        if self.config.use_karras_sigmas:
404
405
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
406
        elif self.config.use_exponential_sigmas:
407
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
408
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
409
        elif self.config.use_beta_sigmas:
410
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
411
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

        second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas)

        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
        second_order_timesteps = torch.from_numpy(second_order_timesteps)
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
        timesteps[1::2] = second_order_timesteps

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = timesteps.to(device, dtype=torch.float32)
        else:
            self.timesteps = timesteps.to(device=device)

        # empty first order variables
        self.sample = None
        self.mid_point_sigma = None

434
        self._step_index = None
435
        self._begin_index = None
436
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
437
438
        self.noise_sampler = None

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def _second_order_timesteps(self, sigmas, log_sigmas):
        def sigma_fn(_t):
            return np.exp(-_t)

        def t_fn(_sigma):
            return -np.log(_sigma)

        midpoint_ratio = 0.5
        t = t_fn(sigmas)
        delta_time = np.diff(t)
        t_proposed = t[:-1] + delta_time * midpoint_ratio
        sig_proposed = sigma_fn(t_proposed)
        timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sig_proposed])
        return timesteps

454
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
455
    def _sigma_to_t(self, sigma, log_sigmas):
456
457
458
459
460
461
462
463
464
465
466
467
468
        """
        Convert sigma values to corresponding timestep values through interpolation.

        Args:
            sigma (`np.ndarray`):
                The sigma value(s) to convert to timestep(s).
            log_sigmas (`np.ndarray`):
                The logarithm of the sigma schedule used for interpolation.

        Returns:
            `np.ndarray`:
                The interpolated timestep value(s) corresponding to the input sigma(s).
        """
469
        # get log sigma
470
        log_sigma = np.log(np.maximum(sigma, 1e-10))
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

491
    # copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
492
    def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
493
494
495
496
497
498
499
500
501
502
503
504
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

505
506
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
507
508
509
510
511
512
513
514
515
516
517
518
519
        """
        Construct an exponential noise schedule.

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following an exponential schedule.
        """
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

536
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
537
538
        return sigmas

539
540
541
542
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
        """
        Construct a beta noise schedule as proposed in [Beta Sampling is All You
        Need](https://huggingface.co/papers/2407.12173).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.
            alpha (`float`, *optional*, defaults to `0.6`):
                The alpha parameter for the beta distribution.
            beta (`float`, *optional*, defaults to `0.6`):
                The beta parameter for the beta distribution.

        Returns:
            `torch.Tensor`:
                The converted sigma values following a beta distribution schedule.
        """
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

577
        sigmas = np.array(
578
579
580
581
582
583
584
585
586
587
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

588
589
590
591
592
593
    @property
    def state_in_first_order(self):
        return self.sample is None

    def step(
        self,
594
595
596
        model_output: Union[torch.Tensor, np.ndarray],
        timestep: Union[float, torch.Tensor],
        sample: Union[torch.Tensor, np.ndarray],
597
598
        return_dict: bool = True,
        s_noise: float = 1.0,
599
    ) -> Union[DPMSolverSDESchedulerOutput, Tuple]:
600
        """
601
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
602
        process from the learned model outputs (most often the predicted noise).
603
604

        Args:
605
            model_output (`torch.Tensor` or `np.ndarray`):
606
                The direct output from learned diffusion model.
607
            timestep (`float` or `torch.Tensor`):
608
                The current discrete timestep in the diffusion chain.
609
            sample (`torch.Tensor` or `np.ndarray`):
610
                A current instance of a sample created by the diffusion process.
611
612
613
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] or
                tuple.
614
615
616
            s_noise (`float`, *optional*, defaults to 1.0):
                Scaling factor for noise added to the sample.

617
        Returns:
618
619
620
            [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
621
        """
622
623
        if self.step_index is None:
            self._init_step_index(timestep)
624
625
626
627
628
629
630

        # Create a noise sampler if it hasn't been created yet
        if self.noise_sampler is None:
            min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max()
            self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed)

        # Define functions to compute sigma and t from each other
631
        def sigma_fn(_t: torch.Tensor) -> torch.Tensor:
632
633
            return _t.neg().exp()

634
        def t_fn(_sigma: torch.Tensor) -> torch.Tensor:
635
636
637
            return _sigma.log().neg()

        if self.state_in_first_order:
638
639
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
640
641
        else:
            # 2nd order
642
643
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

        # Set the midpoint and step size for the current step
        midpoint_ratio = 0.5
        t, t_next = t_fn(sigma), t_fn(sigma_next)
        delta_time = t_next - t
        t_proposed = t + delta_time * midpoint_ratio

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        if self.config.prediction_type == "epsilon":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = sample - sigma_input * model_output
        elif self.config.prediction_type == "v_prediction":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

        if sigma_next == 0:
            derivative = (sample - pred_original_sample) / sigma
            dt = sigma_next - sigma
            prev_sample = sample + derivative * dt
        else:
            if self.state_in_first_order:
                t_next = t_proposed
            else:
                sample = self.sample

            sigma_from = sigma_fn(t)
            sigma_to = sigma_fn(t_next)
            sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
            sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
            ancestral_t = t_fn(sigma_down)
            prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - (
                t - ancestral_t
            ).expm1() * pred_original_sample
            prev_sample = prev_sample + self.noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * sigma_up

            if self.state_in_first_order:
                # store for 2nd order step
                self.sample = sample
                self.mid_point_sigma = sigma_fn(t_next)
            else:
                # free for "first order mode"
                self.sample = None
                self.mid_point_sigma = None

696
697
698
        # upon completion increase step index by one
        self._step_index += 1

699
        if not return_dict:
700
701
702
703
            return (
                prev_sample,
                pred_original_sample,
            )
704

705
        return DPMSolverSDESchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
706

707
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
708
709
    def add_noise(
        self,
710
711
712
713
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        """
        Add noise to the original samples according to the noise schedule at the specified timesteps.

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise tensor to add to the original samples.
            timesteps (`torch.Tensor`):
                The timesteps at which to add noise, determining the noise level from the schedule.

        Returns:
            `torch.Tensor`:
                The noisy samples with added noise scaled according to the timestep schedule.
        """
729
730
731
732
733
734
735
736
737
738
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

739
740
741
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
742
743
744
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
745
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
746
            # add noise is called before first denoising step to create initial latent(img2img)
747
            step_indices = [self.begin_index] * timesteps.shape[0]
748
749
750
751
752
753
754
755
756
757

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps