scheduling_dpmsolver_sde.py 28.8 KB
Newer Older
1
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16
from dataclasses import dataclass
17
18
19
20
21
22
23
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torchsde

from ..configuration_utils import ConfigMixin, register_to_config
24
25
from ..utils import BaseOutput, is_scipy_available
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
27


28
29
30
31
if is_scipy_available():
    import scipy.stats


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DPMSolverSDE
class DPMSolverSDESchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None


51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class BatchedBrownianTree:
    """A wrapper around torchsde.BrownianTree that enables batches of entropy."""

    def __init__(self, x, t0, t1, seed=None, **kwargs):
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get("w0", torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2**63 - 1, []).item()
        self.batched = True
        try:
            assert len(seed) == x.shape[0]
            w0 = w0[0]
        except TypeError:
            seed = [seed]
            self.batched = False
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        self.trees = [
            torchsde.BrownianInterval(
                t0=t0,
                t1=t1,
                size=w0.shape,
                dtype=w0.dtype,
                device=w0.device,
                entropy=s,
                tol=1e-6,
                pool_size=24,
                halfway_tree=True,
            )
            for s in seed
        ]
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    @staticmethod
    def sort(a, b):
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """A noise sampler backed by a torchsde.BrownianTree.

    Args:
        x (Tensor): The tensor whose shape, device and dtype to use to generate
            random samples.
        sigma_min (float): The low end of the valid interval.
        sigma_max (float): The high end of the valid interval.
        seed (int or List[int]): The random seed. If a list of seeds is
            supplied instead of a single integer, then the noise sampler will use one BrownianTree per batch item, each
            with its own seed.
        transform (callable): A function that maps sigma to the sampler's
            internal timestep.
    """

    def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
        self.transform = transform
        t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
        self.tree = BatchedBrownianTree(x, t0, t1, seed)

    def __call__(self, sigma, sigma_next):
        t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()


# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
117
118
119
120
121
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
122
123
124
125
126
127
128
129
130
131
132
133
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
134
135
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
136
137
138
139

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
140
    if alpha_transform_type == "cosine":
141

YiYi Xu's avatar
YiYi Xu committed
142
143
144
145
146
147
148
149
150
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
151
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
152
153
154
155
156

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
157
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
158
159
160
161
162
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSDEScheduler(SchedulerMixin, ConfigMixin):
    """
163
164
    DPMSolverSDEScheduler implements the stochastic sampler from the [Elucidating the Design Space of Diffusion-Based
    Generative Models](https://huggingface.co/papers/2206.00364) paper.
165

166
167
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
168
169

    Args:
170
171
172
173
174
175
176
177
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.00085):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.012):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
178
            `linear` or `scaled_linear`.
179
180
181
182
183
184
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
185
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
186
187
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
188
189
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
190
191
192
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
193
        noise_sampler_seed (`int`, *optional*, defaults to `None`):
194
195
196
197
198
            The random seed to use for the noise sampler. If `None`, a random seed is generated.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
199
            An offset added to the inference steps, as required by some model families.
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        prediction_type: str = "epsilon",
        use_karras_sigmas: Optional[bool] = False,
215
        use_exponential_sigmas: Optional[bool] = False,
216
        use_beta_sigmas: Optional[bool] = False,
217
        noise_sampler_seed: Optional[int] = None,
218
219
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
220
    ):
221
222
223
224
225
226
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
227
228
229
230
231
232
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
233
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
234
235
236
237
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
238
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
239
240
241
242
243
244
245
246
247

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
        self.use_karras_sigmas = use_karras_sigmas
        self.noise_sampler = None
        self.noise_sampler_seed = noise_sampler_seed
248
        self._step_index = None
249
        self._begin_index = None
250
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
251

252
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
253
254
255
256
257
258
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
259
260
261
262
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
263
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
264

265
266
        return indices[pos].item()

267
268
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
269
270
271
272
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
273
        else:
274
            self._step_index = self._begin_index
275

276
277
278
279
280
281
282
283
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

284
285
286
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
287
        The index counter for current timestep. It will increase 1 after each scheduler step.
288
289
290
        """
        return self._step_index

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

309
310
    def scale_model_input(
        self,
311
312
313
        sample: torch.Tensor,
        timestep: Union[float, torch.Tensor],
    ) -> torch.Tensor:
314
315
316
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
317
318

        Args:
319
            sample (`torch.Tensor`):
320
321
322
323
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

324
        Returns:
325
            `torch.Tensor`:
326
                A scaled input sample.
327
        """
328
329
        if self.step_index is None:
            self._init_step_index(timestep)
330

331
        sigma = self.sigmas[self.step_index]
332
333
334
335
336
337
338
339
340
341
342
        sigma_input = sigma if self.state_in_first_order else self.mid_point_sigma
        sample = sample / ((sigma_input**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
343
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
344
345
346

        Args:
            num_inference_steps (`int`):
347
348
349
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
350
351
352
353
354
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

Quentin Gallouédec's avatar
Quentin Gallouédec committed
355
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
374
375
376
377
378

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        log_sigmas = np.log(sigmas)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)

379
        if self.config.use_karras_sigmas:
380
381
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
382
        elif self.config.use_exponential_sigmas:
383
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
384
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
385
        elif self.config.use_beta_sigmas:
386
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
387
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

        second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas)

        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
        second_order_timesteps = torch.from_numpy(second_order_timesteps)
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
        timesteps[1::2] = second_order_timesteps

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = timesteps.to(device, dtype=torch.float32)
        else:
            self.timesteps = timesteps.to(device=device)

        # empty first order variables
        self.sample = None
        self.mid_point_sigma = None

410
        self._step_index = None
411
        self._begin_index = None
412
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
413
414
        self.noise_sampler = None

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    def _second_order_timesteps(self, sigmas, log_sigmas):
        def sigma_fn(_t):
            return np.exp(-_t)

        def t_fn(_sigma):
            return -np.log(_sigma)

        midpoint_ratio = 0.5
        t = t_fn(sigmas)
        delta_time = np.diff(t)
        t_proposed = t[:-1] + delta_time * midpoint_ratio
        sig_proposed = sigma_fn(t_proposed)
        timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sig_proposed])
        return timesteps

430
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
431
432
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
433
        log_sigma = np.log(np.maximum(sigma, 1e-10))
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

454
    # copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
455
    def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
456
457
458
459
460
461
462
463
464
465
466
467
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

487
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
488
489
        return sigmas

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

511
        sigmas = np.array(
512
513
514
515
516
517
518
519
520
521
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

522
523
524
525
526
527
    @property
    def state_in_first_order(self):
        return self.sample is None

    def step(
        self,
528
529
530
        model_output: Union[torch.Tensor, np.ndarray],
        timestep: Union[float, torch.Tensor],
        sample: Union[torch.Tensor, np.ndarray],
531
532
        return_dict: bool = True,
        s_noise: float = 1.0,
533
    ) -> Union[DPMSolverSDESchedulerOutput, Tuple]:
534
        """
535
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
536
        process from the learned model outputs (most often the predicted noise).
537
538

        Args:
539
            model_output (`torch.Tensor` or `np.ndarray`):
540
                The direct output from learned diffusion model.
541
            timestep (`float` or `torch.Tensor`):
542
                The current discrete timestep in the diffusion chain.
543
            sample (`torch.Tensor` or `np.ndarray`):
544
                A current instance of a sample created by the diffusion process.
545
546
547
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] or
                tuple.
548
549
550
            s_noise (`float`, *optional*, defaults to 1.0):
                Scaling factor for noise added to the sample.

551
        Returns:
552
553
554
            [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_dpmsolver_sde.DPMSolverSDESchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
555
        """
556
557
        if self.step_index is None:
            self._init_step_index(timestep)
558
559
560
561
562
563
564

        # Create a noise sampler if it hasn't been created yet
        if self.noise_sampler is None:
            min_sigma, max_sigma = self.sigmas[self.sigmas > 0].min(), self.sigmas.max()
            self.noise_sampler = BrownianTreeNoiseSampler(sample, min_sigma, max_sigma, self.noise_sampler_seed)

        # Define functions to compute sigma and t from each other
565
        def sigma_fn(_t: torch.Tensor) -> torch.Tensor:
566
567
            return _t.neg().exp()

568
        def t_fn(_sigma: torch.Tensor) -> torch.Tensor:
569
570
571
            return _sigma.log().neg()

        if self.state_in_first_order:
572
573
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
574
575
        else:
            # 2nd order
576
577
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

        # Set the midpoint and step size for the current step
        midpoint_ratio = 0.5
        t, t_next = t_fn(sigma), t_fn(sigma_next)
        delta_time = t_next - t
        t_proposed = t + delta_time * midpoint_ratio

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        if self.config.prediction_type == "epsilon":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = sample - sigma_input * model_output
        elif self.config.prediction_type == "v_prediction":
            sigma_input = sigma if self.state_in_first_order else sigma_fn(t_proposed)
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

        if sigma_next == 0:
            derivative = (sample - pred_original_sample) / sigma
            dt = sigma_next - sigma
            prev_sample = sample + derivative * dt
        else:
            if self.state_in_first_order:
                t_next = t_proposed
            else:
                sample = self.sample

            sigma_from = sigma_fn(t)
            sigma_to = sigma_fn(t_next)
            sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
            sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
            ancestral_t = t_fn(sigma_down)
            prev_sample = (sigma_fn(ancestral_t) / sigma_fn(t)) * sample - (
                t - ancestral_t
            ).expm1() * pred_original_sample
            prev_sample = prev_sample + self.noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * sigma_up

            if self.state_in_first_order:
                # store for 2nd order step
                self.sample = sample
                self.mid_point_sigma = sigma_fn(t_next)
            else:
                # free for "first order mode"
                self.sample = None
                self.mid_point_sigma = None

630
631
632
        # upon completion increase step index by one
        self._step_index += 1

633
        if not return_dict:
634
635
636
637
            return (
                prev_sample,
                pred_original_sample,
            )
638

639
        return DPMSolverSDESchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
640

641
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
642
643
    def add_noise(
        self,
644
645
646
647
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
648
649
650
651
652
653
654
655
656
657
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

658
659
660
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
661
662
663
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
664
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
665
            # add noise is called before first denoising step to create initial latent(img2img)
666
            step_indices = [self.begin_index] * timesteps.shape[0]
667
668
669
670
671
672
673
674
675
676

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps