scheduling_dpmsolver_multistep.py 54.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, is_scipy_available
Dhruv Nair's avatar
Dhruv Nair committed
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
34
35
36
37
38
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
39
40
41
42
43
44
45
46
47
48
49
50
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
51
52
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
53
54
55
56

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
57
    if alpha_transform_type == "cosine":
58

YiYi Xu's avatar
YiYi Xu committed
59
60
61
62
63
64
65
66
67
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
68
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
69
70
71
72
73

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
74
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


78
79
80
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
81
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
82
83
84


    Args:
85
        betas (`torch.Tensor`):
86
87
88
            the betas that the scheduler is being initialized with.

    Returns:
89
        `torch.Tensor`: rescaled betas with zero terminal SNR
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


115
116
class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
117
    `DPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
118

119
120
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
121
122

    Args:
123
124
125
126
127
128
129
130
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
131
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
132
133
134
135
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
136
            sampling, and `solver_order=3` for unconditional sampling.
137
138
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
139
140
            `sample` (directly predicts the noisy sample), `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper), or `flow_prediction`.
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
            Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
            paper, and the `dpmsolver++` type implements the algorithms in the
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
161
162
163
164
        euler_at_final (`bool`, defaults to `False`):
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
            steps, but sometimes may result in blurring.
165
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
166
167
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
168
169
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
170
171
172
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
173
174
175
176
        use_lu_lambdas (`bool`, *optional*, defaults to `False`):
            Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during
            the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of
            `lambda(t)`.
177
178
179
180
        use_flow_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
        flow_shift (`float`, *optional*, defaults to 1.0):
            The shift value for the timestep schedule for flow matching.
181
        final_sigmas_type (`str`, defaults to `"zero"`):
182
183
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
184
185
186
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
187
        variance_type (`str`, *optional*):
188
189
190
191
192
193
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
194
            An offset added to the inference steps, as required by some model families.
195
196
197
198
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
199
200
    """

Kashif Rasul's avatar
Kashif Rasul committed
201
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
202
    order = 1
203
204
205
206
207
208
209
210

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
211
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
212
        solver_order: int = 2,
213
        prediction_type: str = "epsilon",
214
215
216
217
218
219
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
220
        euler_at_final: bool = False,
221
        use_karras_sigmas: Optional[bool] = False,
222
        use_exponential_sigmas: Optional[bool] = False,
223
        use_beta_sigmas: Optional[bool] = False,
224
        use_lu_lambdas: Optional[bool] = False,
225
226
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
227
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
228
229
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
230
231
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
232
        rescale_betas_zero_snr: bool = False,
233
234
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
235
    ):
236
237
238
239
240
241
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
242
243
244
245
        if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)

246
        if trained_betas is not None:
247
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
248
249
250
251
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
252
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
253
254
255
256
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
257
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
258

259
260
261
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

262
263
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
264
265
266
267
268
269

        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

270
271
272
273
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
274
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
275
276
277
278
279

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
280
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
281
            if algorithm_type == "deis":
282
                self.register_to_config(algorithm_type="dpmsolver++")
283
            else:
284
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
285

286
        if solver_type not in ["midpoint", "heun"]:
287
            if solver_type in ["logrho", "bh1", "bh2"]:
288
                self.register_to_config(solver_type="midpoint")
289
            else:
290
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
291

292
293
294
295
296
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
            )

297
298
299
300
301
302
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
303
        self._step_index = None
304
        self._begin_index = None
305
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
306
307
308
309

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
310
        The index counter for current timestep. It will increase 1 after each scheduler step.
311
312
        """
        return self._step_index
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

331
332
333
334
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
335
        mu: Optional[float] = None,
336
337
        timesteps: Optional[List[int]] = None,
    ):
338
        """
339
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
340
341
342

        Args:
            num_inference_steps (`int`):
343
344
345
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
346
347
348
349
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
                based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
                must be `None`, and `timestep_spacing` attribute will be ignored.
350
        """
351
352
353
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
354
355
356
357
358
359
360
361
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
        if timesteps is not None and self.config.use_lu_lambdas:
            raise ValueError("Cannot use `timesteps` with `config.use_lu_lambdas = True`")
362
363
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
364
365
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
366
367
368

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
369
        else:
370
371
372
373
374
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
            last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()

Quentin Gallouédec's avatar
Quentin Gallouédec committed
375
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, last_timestep - 1, num_inference_steps + 1)
                    .round()[::-1][:-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = last_timestep // (num_inference_steps + 1)
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (
                    (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
                )
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )
401

402
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
403
404
        log_sigmas = np.log(sigmas)

405
        if self.config.use_karras_sigmas:
406
            sigmas = np.flip(sigmas).copy()
407
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
408
409
410
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
            if self.config.beta_schedule != "squaredcos_cap_v2":
                timesteps = timesteps.round()
411
412
413
414
        elif self.config.use_lu_lambdas:
            lambdas = np.flip(log_sigmas.copy())
            lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps)
            sigmas = np.exp(lambdas)
415
416
417
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
            if self.config.beta_schedule != "squaredcos_cap_v2":
                timesteps = timesteps.round()
418
        elif self.config.use_exponential_sigmas:
419
420
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
421
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
422
        elif self.config.use_beta_sigmas:
423
424
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
425
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
426
427
428
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
429
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
430
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
431
432
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
433
434

        if self.config.final_sigmas_type == "sigma_min":
435
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
436
437
438
439
440
441
442
443
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
444

445
446
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
447
448
449

        self.num_inference_steps = len(timesteps)

450
451
452
453
454
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

455
456
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
457
        self._begin_index = None
458
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
459

460
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
461
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
462
463
464
465
466
467
468
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
469
        https://huggingface.co/papers/2205.11487
470
471
        """
        dtype = sample.dtype
472
        batch_size, channels, *remaining_dims = sample.shape
473
474
475
476
477

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
478
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
479
480
481
482
483
484
485
486
487
488

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

489
        sample = sample.reshape(batch_size, channels, *remaining_dims)
490
491
492
        sample = sample.to(dtype)

        return sample
493

494
495
496
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
497
        log_sigma = np.log(np.maximum(sigma, 1e-10))
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

518
    def _sigma_to_alpha_sigma_t(self, sigma):
519
520
521
522
523
524
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
525
526
527

        return alpha_t, sigma_t

528
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
529
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
530
531
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
546
547
548
549
550
551
552
553

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

554
    def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor:
555
556
557
558
559
560
561
562
563
564
565
566
        """Constructs the noise schedule of Lu et al. (2022)."""

        lambda_min: float = in_lambdas[-1].item()
        lambda_max: float = in_lambdas[0].item()

        rho = 1.0  # 1.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = lambda_min ** (1 / rho)
        max_inv_rho = lambda_max ** (1 / rho)
        lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return lambdas

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

586
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
587
588
        return sigmas

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

610
        sigmas = np.array(
611
612
613
614
615
616
617
618
619
620
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

621
    def convert_model_output(
622
        self,
623
        model_output: torch.Tensor,
624
        *args,
625
        sample: torch.Tensor = None,
626
        **kwargs,
627
    ) -> torch.Tensor:
628
        """
629
630
631
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.
632

Steven Liu's avatar
Steven Liu committed
633
634
        > [!TIP] > The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both
        noise > prediction and data prediction models.
635
636

        Args:
637
            model_output (`torch.Tensor`):
638
                The direct output from the learned diffusion model.
639
            sample (`torch.Tensor`):
640
                A current instance of a sample created by the diffusion process.
641
642

        Returns:
643
            `torch.Tensor`:
644
                The converted model output.
645
        """
646
647
648
649
650
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
651
                raise ValueError("missing `sample` as a required keyword argument")
652
653
654
655
656
657
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
658

659
        # DPM-Solver++ needs to solve an integral of the data prediction model.
660
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
661
            if self.config.prediction_type == "epsilon":
662
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
663
                if self.config.variance_type in ["learned", "learned_range"]:
664
                    model_output = model_output[:, :3]
665
666
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
667
                x0_pred = (sample - sigma_t * model_output) / alpha_t
668
            elif self.config.prediction_type == "sample":
669
                x0_pred = model_output
670
            elif self.config.prediction_type == "v_prediction":
671
672
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
673
                x0_pred = alpha_t * sample - sigma_t * model_output
674
675
676
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
677
678
            else:
                raise ValueError(
679
680
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the DPMSolverMultistepScheduler."
681
682
                )

683
            if self.config.thresholding:
684
685
                x0_pred = self._threshold_sample(x0_pred)

686
            return x0_pred
687

688
        # DPM-Solver needs to solve an integral of the noise prediction model.
689
        elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
690
            if self.config.prediction_type == "epsilon":
691
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
692
693
694
695
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
696
            elif self.config.prediction_type == "sample":
697
698
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
699
                epsilon = (sample - alpha_t * model_output) / sigma_t
700
            elif self.config.prediction_type == "v_prediction":
701
702
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
703
                epsilon = alpha_t * model_output + sigma_t * sample
704
705
            else:
                raise ValueError(
706
707
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
708
                )
709

710
            if self.config.thresholding:
711
712
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
713
714
715
716
717
718
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

719
720
    def dpm_solver_first_order_update(
        self,
721
        model_output: torch.Tensor,
722
        *args,
723
724
        sample: torch.Tensor = None,
        noise: Optional[torch.Tensor] = None,
725
        **kwargs,
726
    ) -> torch.Tensor:
727
        """
728
        One step for the first-order DPMSolver (equivalent to DDIM).
729
730

        Args:
731
            model_output (`torch.Tensor`):
732
                The direct output from the learned diffusion model.
733
            sample (`torch.Tensor`):
734
                A current instance of a sample created by the diffusion process.
735
736

        Returns:
737
            `torch.Tensor`:
738
                The sample tensor at the previous timestep.
739
        """
740
741
742
743
744
745
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
746
                raise ValueError("missing `sample` as a required keyword argument")
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

767
768
769
770
771
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
772
773
774
775
776
777
778
779
780
781
782
783
784
785
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            x_t = (
                (alpha_t / alpha_s) * sample
                - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
                + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
            )
786
787
788
789
        return x_t

    def multistep_dpm_solver_second_order_update(
        self,
790
        model_output_list: List[torch.Tensor],
791
        *args,
792
793
        sample: torch.Tensor = None,
        noise: Optional[torch.Tensor] = None,
794
        **kwargs,
795
    ) -> torch.Tensor:
796
        """
797
        One step for the second-order multistep DPMSolver.
798
799

        Args:
800
            model_output_list (`List[torch.Tensor]`):
801
                The direct outputs from learned diffusion model at current and latter timesteps.
802
            sample (`torch.Tensor`):
803
                A current instance of a sample created by the diffusion process.
804
805

        Returns:
806
            `torch.Tensor`:
807
                The sample tensor at the previous timestep.
808
        """
809
810
811
812
813
814
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
815
                raise ValueError("missing `sample` as a required keyword argument")
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

844
        m0, m1 = model_output_list[-1], model_output_list[-2]
845

846
847
848
849
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
850
            # See https://huggingface.co/papers/2211.01095 for detailed derivations
851
852
853
854
855
856
857
858
859
860
861
862
863
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
864
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
865
866
867
868
869
870
871
872
873
874
875
876
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * (torch.exp(h) - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
909
910
911
912
        return x_t

    def multistep_dpm_solver_third_order_update(
        self,
913
        model_output_list: List[torch.Tensor],
914
        *args,
915
        sample: torch.Tensor = None,
StAlKeR7779's avatar
StAlKeR7779 committed
916
        noise: Optional[torch.Tensor] = None,
917
        **kwargs,
918
    ) -> torch.Tensor:
919
        """
920
        One step for the third-order multistep DPMSolver.
921
922

        Args:
923
            model_output_list (`List[torch.Tensor]`):
924
                The direct outputs from learned diffusion model at current and latter timesteps.
925
            sample (`torch.Tensor`):
926
                A current instance of a sample created by diffusion process.
927
928

        Returns:
929
            `torch.Tensor`:
930
                The sample tensor at the previous timestep.
931
        """
932
933
934
935
936
937
938

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
939
                raise ValueError("missing `sample` as a required keyword argument")
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
959
        )
960
961
962
963
964
965
966
967
968
969
970
971
972

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

973
974
975
976
977
978
979
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
980
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
981
982
983
984
985
986
987
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
988
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
989
990
991
992
993
994
            x_t = (
                (alpha_t / alpha_s0) * sample
                - (sigma_t * (torch.exp(h) - 1.0)) * D0
                - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
            )
StAlKeR7779's avatar
StAlKeR7779 committed
995
996
997
998
999
1000
1001
1002
1003
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                + (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
1004
1005
        return x_t

1006
1007
1008
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
1009

1010
        index_candidates = (schedule_timesteps == timestep).nonzero()
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        return step_index

    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
1036

1037
1038
    def step(
        self,
1039
        model_output: torch.Tensor,
1040
        timestep: Union[int, torch.Tensor],
1041
        sample: torch.Tensor,
1042
        generator=None,
1043
        variance_noise: Optional[torch.Tensor] = None,
1044
1045
1046
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
1047
1048
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DPMSolver.
1049
1050

        Args:
1051
            model_output (`torch.Tensor`):
1052
1053
1054
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1055
            sample (`torch.Tensor`):
1056
1057
1058
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
1059
            variance_noise (`torch.Tensor`):
1060
1061
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`LEdits++`].
1062
1063
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
1064
1065

        Returns:
1066
1067
1068
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
1069
1070
1071
1072
1073
1074
1075

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

1076
1077
1078
        if self.step_index is None:
            self._init_step_index(timestep)

1079
1080
        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
1081
1082
1083
            self.config.euler_at_final
            or (self.config.lower_order_final and len(self.timesteps) < 15)
            or self.config.final_sigmas_type == "zero"
1084
1085
        )
        lower_order_second = (
1086
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
1087
1088
        )

1089
        model_output = self.convert_model_output(model_output, sample=sample)
1090
1091
1092
1093
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

1094
1095
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)
1096
        if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
1097
            noise = randn_tensor(
1098
                model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
1099
            )
1100
1101
        elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
            noise = variance_noise.to(device=model_output.device, dtype=torch.float32)
1102
1103
1104
        else:
            noise = None

1105
        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
1106
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
1107
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
1108
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
1109
        else:
StAlKeR7779's avatar
StAlKeR7779 committed
1110
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample, noise=noise)
1111
1112
1113
1114

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

1115
1116
1117
        # Cast sample back to expected dtype
        prev_sample = prev_sample.to(model_output.dtype)

1118
1119
1120
        # upon completion increase step index by one
        self._step_index += 1

1121
1122
1123
1124
1125
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1126
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1127
1128
1129
1130
1131
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1132
            sample (`torch.Tensor`):
1133
                The input sample.
1134
1135

        Returns:
1136
            `torch.Tensor`:
1137
                A scaled input sample.
1138
1139
1140
1141
1142
        """
        return sample

    def add_noise(
        self,
1143
1144
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1145
        timesteps: torch.IntTensor,
1146
    ) -> torch.Tensor:
1147
1148
1149
1150
1151
1152
1153
1154
1155
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1156

1157
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1158
1159
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1160
1161
1162
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1163
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1164
            # add noise is called before first denoising step to create initial latent(img2img)
1165
            step_indices = [self.begin_index] * timesteps.shape[0]
1166

1167
1168
1169
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1170

1171
1172
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1173
1174
1175
1176
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps