scheduling_dpmsolver_multistep.py 43.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate
Dhruv Nair's avatar
Dhruv Nair committed
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
30
31
32
33
34
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
35
36
37
38
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
47
48
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
49
50
51
52

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
53
    if alpha_transform_type == "cosine":
54

YiYi Xu's avatar
YiYi Xu committed
55
56
57
58
59
60
61
62
63
64
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
65
66
67
68
69

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
70
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
71
72
73
74
75
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
76
    `DPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
77

78
79
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
80
81

    Args:
82
83
84
85
86
87
88
89
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
90
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
91
92
93
94
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
95
            sampling, and `solver_order=3` for unconditional sampling.
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
            Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
            paper, and the `dpmsolver++` type implements the algorithms in the
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
120
121
122
123
        euler_at_final (`bool`, defaults to `False`):
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
            steps, but sometimes may result in blurring.
124
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
125
126
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
127
128
129
130
        use_lu_lambdas (`bool`, *optional*, defaults to `False`):
            Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during
            the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of
            `lambda(t)`.
131
132
133
        final_sigmas_type (`str`, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma
            is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
134
135
136
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
137
        variance_type (`str`, *optional*):
138
139
140
141
142
143
144
145
146
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
147
148
    """

Kashif Rasul's avatar
Kashif Rasul committed
149
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
150
    order = 1
151
152
153
154
155
156
157
158

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
159
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
160
        solver_order: int = 2,
161
        prediction_type: str = "epsilon",
162
163
164
165
166
167
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
168
        euler_at_final: bool = False,
169
        use_karras_sigmas: Optional[bool] = False,
170
        use_lu_lambdas: Optional[bool] = False,
171
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
172
173
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
174
175
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
176
    ):
177
178
179
180
        if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)

181
        if trained_betas is not None:
182
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
183
184
185
186
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
187
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
188
189
190
191
192
193
194
195
196
197
198
199
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
200
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
201
202
203
204
205

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
206
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
207
            if algorithm_type == "deis":
208
                self.register_to_config(algorithm_type="dpmsolver++")
209
210
            else:
                raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
211

212
        if solver_type not in ["midpoint", "heun"]:
213
            if solver_type in ["logrho", "bh1", "bh2"]:
214
                self.register_to_config(solver_type="midpoint")
215
216
            else:
                raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
217

218
219
220
221
222
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
            )

223
224
225
226
227
228
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
229
        self._step_index = None
230
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
231
232
233
234
235
236
237

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index
238

239
    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
240
        """
241
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
242
243
244

        Args:
            num_inference_steps (`int`):
245
246
247
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
248
        """
249
250
        # Clipping the minimum of all lambda(t) for numerical stability.
        # This is critical for cosine (squaredcos_cap_v2) noise schedule.
251
        clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()

        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = last_timestep // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
275

276
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
277
278
        log_sigmas = np.log(sigmas)

279
        if self.config.use_karras_sigmas:
280
            sigmas = np.flip(sigmas).copy()
281
282
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
283
284
285
286
287
        elif self.config.use_lu_lambdas:
            lambdas = np.flip(log_sigmas.copy())
            lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps)
            sigmas = np.exp(lambdas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
288
289
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
290
291

        if self.config.final_sigmas_type == "sigma_min":
292
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
293
294
295
296
297
298
299
300
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
301

302
303
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
304
305
306

        self.num_inference_steps = len(timesteps)

307
308
309
310
311
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

312
313
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
314
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
315

316
317
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
318
319
320
321
322
323
324
325
326
327
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
328
        batch_size, channels, *remaining_dims = sample.shape
329
330
331
332
333

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
334
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
335
336
337
338
339
340
341
342
343
344

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

345
        sample = sample.reshape(batch_size, channels, *remaining_dims)
346
347
348
        sample = sample.to(dtype)

        return sample
349

350
351
352
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
353
        log_sigma = np.log(np.maximum(sigma, 1e-10))
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

374
375
376
377
378
379
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

380
381
382
383
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
398
399
400
401
402
403
404
405

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

406
407
408
409
410
411
412
413
414
415
416
417
418
    def _convert_to_lu(self, in_lambdas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Lu et al. (2022)."""

        lambda_min: float = in_lambdas[-1].item()
        lambda_max: float = in_lambdas[0].item()

        rho = 1.0  # 1.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = lambda_min ** (1 / rho)
        max_inv_rho = lambda_max ** (1 / rho)
        lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return lambdas

419
    def convert_model_output(
420
421
422
423
424
        self,
        model_output: torch.FloatTensor,
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
425
426
    ) -> torch.FloatTensor:
        """
427
428
429
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.
430

431
        <Tip>
432

433
434
435
436
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.

        </Tip>
437
438

        Args:
439
440
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
441
            sample (`torch.FloatTensor`):
442
                A current instance of a sample created by the diffusion process.
443
444

        Returns:
445
446
            `torch.FloatTensor`:
                The converted model output.
447
        """
448
449
450
451
452
453
454
455
456
457
458
459
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
460

461
        # DPM-Solver++ needs to solve an integral of the data prediction model.
462
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
463
            if self.config.prediction_type == "epsilon":
464
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
465
                if self.config.variance_type in ["learned", "learned_range"]:
466
                    model_output = model_output[:, :3]
467
468
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
469
                x0_pred = (sample - sigma_t * model_output) / alpha_t
470
            elif self.config.prediction_type == "sample":
471
                x0_pred = model_output
472
            elif self.config.prediction_type == "v_prediction":
473
474
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
475
                x0_pred = alpha_t * sample - sigma_t * model_output
476
477
            else:
                raise ValueError(
478
479
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
480
481
                )

482
            if self.config.thresholding:
483
484
                x0_pred = self._threshold_sample(x0_pred)

485
            return x0_pred
486

487
        # DPM-Solver needs to solve an integral of the noise prediction model.
488
        elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
489
            if self.config.prediction_type == "epsilon":
490
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
491
492
493
494
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
495
            elif self.config.prediction_type == "sample":
496
497
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
498
                epsilon = (sample - alpha_t * model_output) / sigma_t
499
            elif self.config.prediction_type == "v_prediction":
500
501
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
502
                epsilon = alpha_t * model_output + sigma_t * sample
503
504
            else:
                raise ValueError(
505
506
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
507
                )
508

509
            if self.config.thresholding:
510
511
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
512
513
514
515
516
517
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

518
519
520
    def dpm_solver_first_order_update(
        self,
        model_output: torch.FloatTensor,
521
522
        *args,
        sample: torch.FloatTensor = None,
523
        noise: Optional[torch.FloatTensor] = None,
524
        **kwargs,
525
526
    ) -> torch.FloatTensor:
        """
527
        One step for the first-order DPMSolver (equivalent to DDIM).
528
529

        Args:
530
531
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
532
            sample (`torch.FloatTensor`):
533
                A current instance of a sample created by the diffusion process.
534
535

        Returns:
536
537
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
538
        """
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

566
567
568
569
570
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            x_t = (
                (alpha_t / alpha_s) * sample
                - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
                + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
            )
585
586
587
588
589
        return x_t

    def multistep_dpm_solver_second_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
590
591
        *args,
        sample: torch.FloatTensor = None,
592
        noise: Optional[torch.FloatTensor] = None,
593
        **kwargs,
594
595
    ) -> torch.FloatTensor:
        """
596
        One step for the second-order multistep DPMSolver.
597
598
599

        Args:
            model_output_list (`List[torch.FloatTensor]`):
600
                The direct outputs from learned diffusion model at current and latter timesteps.
601
            sample (`torch.FloatTensor`):
602
                A current instance of a sample created by the diffusion process.
603
604

        Returns:
605
606
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
607
        """
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

643
        m0, m1 = model_output_list[-1], model_output_list[-2]
644

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * (torch.exp(h) - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
708
709
710
711
712
        return x_t

    def multistep_dpm_solver_third_order_update(
        self,
        model_output_list: List[torch.FloatTensor],
713
714
715
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
716
717
    ) -> torch.FloatTensor:
        """
718
        One step for the third-order multistep DPMSolver.
719
720
721

        Args:
            model_output_list (`List[torch.FloatTensor]`):
722
                The direct outputs from learned diffusion model at current and latter timesteps.
723
            sample (`torch.FloatTensor`):
724
                A current instance of a sample created by diffusion process.
725
726

        Returns:
727
728
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
729
        """
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
757
        )
758
759
760
761
762
763
764
765
766
767
768
769
770

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            x_t = (
                (alpha_t / alpha_s0) * sample
                - (sigma_t * (torch.exp(h) - 1.0)) * D0
                - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
            )
        return x_t

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

        self._step_index = step_index

814
815
816
817
818
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
819
        generator=None,
820
821
822
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
823
824
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DPMSolver.
825
826

        Args:
827
828
829
830
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
831
            sample (`torch.FloatTensor`):
832
833
834
835
836
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
837
838

        Returns:
839
840
841
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
842
843
844
845
846
847
848

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

849
850
851
        if self.step_index is None:
            self._init_step_index(timestep)

852
853
        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
854
855
856
            self.config.euler_at_final
            or (self.config.lower_order_final and len(self.timesteps) < 15)
            or self.config.final_sigmas_type == "zero"
857
858
        )
        lower_order_second = (
859
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
860
861
        )

862
        model_output = self.convert_model_output(model_output, sample=sample)
863
864
865
866
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

867
868
869
870
871
872
873
        if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

874
        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
875
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
876
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
877
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
878
        else:
879
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
880
881
882
883

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

884
885
886
        # upon completion increase step index by one
        self._step_index += 1

887
888
889
890
891
892
893
894
895
896
897
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
898
899
            sample (`torch.FloatTensor`):
                The input sample.
900
901

        Returns:
902
903
            `torch.FloatTensor`:
                A scaled input sample.
904
905
906
907
908
909
910
        """
        return sample

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
911
        timesteps: torch.IntTensor,
912
    ) -> torch.FloatTensor:
913
914
915
916
917
918
919
920
921
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
922

923
924
925
926
927
928
929
930
931
932
        step_indices = []
        for timestep in timesteps:
            index_candidates = (schedule_timesteps == timestep).nonzero()
            if len(index_candidates) == 0:
                step_index = len(schedule_timesteps) - 1
            elif len(index_candidates) > 1:
                step_index = index_candidates[1].item()
            else:
                step_index = index_candidates[0].item()
            step_indices.append(step_index)
933

934
935
936
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
937

938
939
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
940
941
942
943
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps