scheduling_dpmsolver_multistep.py 54.3 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, is_scipy_available
Dhruv Nair's avatar
Dhruv Nair committed
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
34
35
36
37
38
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
39
40
41
42
43
44
45
46
47
48
49
50
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
51
52
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
53
54
55
56

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
57
    if alpha_transform_type == "cosine":
58

YiYi Xu's avatar
YiYi Xu committed
59
60
61
62
63
64
65
66
67
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
68
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
69
70
71
72
73

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
74
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


78
79
80
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
81
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
82
83
84


    Args:
85
        betas (`torch.Tensor`):
86
87
88
            the betas that the scheduler is being initialized with.

    Returns:
89
        `torch.Tensor`: rescaled betas with zero terminal SNR
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


115
116
class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
117
    `DPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
118

119
120
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
121
122

    Args:
123
124
125
126
127
128
129
130
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
131
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
132
133
134
135
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
136
            sampling, and `solver_order=3` for unconditional sampling.
137
138
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
139
140
            `sample` (directly predicts the noisy sample), `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper), or `flow_prediction`.
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
            Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
            paper, and the `dpmsolver++` type implements the algorithms in the
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
161
162
163
164
        euler_at_final (`bool`, defaults to `False`):
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
            steps, but sometimes may result in blurring.
165
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
166
167
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
168
169
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
170
171
172
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
173
174
175
176
        use_lu_lambdas (`bool`, *optional*, defaults to `False`):
            Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during
            the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of
            `lambda(t)`.
177
178
179
180
        use_flow_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
        flow_shift (`float`, *optional*, defaults to 1.0):
            The shift value for the timestep schedule for flow matching.
181
        final_sigmas_type (`str`, defaults to `"zero"`):
182
183
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
184
185
186
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
187
        variance_type (`str`, *optional*):
188
189
190
191
192
193
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
194
            An offset added to the inference steps, as required by some model families.
195
196
197
198
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
199
200
    """

Kashif Rasul's avatar
Kashif Rasul committed
201
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
202
    order = 1
203
204
205
206
207
208
209
210

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
211
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
212
        solver_order: int = 2,
213
        prediction_type: str = "epsilon",
214
215
216
217
218
219
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
        lower_order_final: bool = True,
220
        euler_at_final: bool = False,
221
        use_karras_sigmas: Optional[bool] = False,
222
        use_exponential_sigmas: Optional[bool] = False,
223
        use_beta_sigmas: Optional[bool] = False,
224
        use_lu_lambdas: Optional[bool] = False,
225
226
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
227
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
228
229
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
230
231
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
232
        rescale_betas_zero_snr: bool = False,
233
234
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
235
    ):
236
237
238
239
240
241
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
242
243
244
245
        if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
            deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)

246
        if trained_betas is not None:
247
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
248
249
250
251
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
252
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
253
254
255
256
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
257
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
258

259
260
261
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

262
263
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
264
265
266
267
268
269

        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

270
271
272
273
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
274
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
275
276
277
278
279

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
280
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
281
            if algorithm_type == "deis":
282
                self.register_to_config(algorithm_type="dpmsolver++")
283
            else:
284
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
285

286
        if solver_type not in ["midpoint", "heun"]:
287
            if solver_type in ["logrho", "bh1", "bh2"]:
288
                self.register_to_config(solver_type="midpoint")
289
            else:
290
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
291

292
293
294
295
296
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
            )

297
298
299
300
301
302
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.lower_order_nums = 0
303
        self._step_index = None
304
        self._begin_index = None
305
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
306
307
308
309

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
310
        The index counter for current timestep. It will increase 1 after each scheduler step.
311
312
        """
        return self._step_index
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

331
332
333
334
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
335
        mu: Optional[float] = None,
336
337
        timesteps: Optional[List[int]] = None,
    ):
338
        """
339
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
340
341
342

        Args:
            num_inference_steps (`int`):
343
344
345
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
346
347
348
349
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
                based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
                must be `None`, and `timestep_spacing` attribute will be ignored.
350
        """
351
352
353
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
354
355
356
357
358
359
360
361
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
        if timesteps is not None and self.config.use_lu_lambdas:
            raise ValueError("Cannot use `timesteps` with `config.use_lu_lambdas = True`")
362
363
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
364
365
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
366
367
368

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
369
        else:
370
371
372
373
374
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
            last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()

Quentin Gallouédec's avatar
Quentin Gallouédec committed
375
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, last_timestep - 1, num_inference_steps + 1)
                    .round()[::-1][:-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = last_timestep // (num_inference_steps + 1)
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (
                    (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
                )
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )
401

402
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
403
404
        log_sigmas = np.log(sigmas)

405
        if self.config.use_karras_sigmas:
406
            sigmas = np.flip(sigmas).copy()
407
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
408
409
410
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
            if self.config.beta_schedule != "squaredcos_cap_v2":
                timesteps = timesteps.round()
411
412
413
414
        elif self.config.use_lu_lambdas:
            lambdas = np.flip(log_sigmas.copy())
            lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps)
            sigmas = np.exp(lambdas)
415
416
417
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
            if self.config.beta_schedule != "squaredcos_cap_v2":
                timesteps = timesteps.round()
418
        elif self.config.use_exponential_sigmas:
419
420
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
421
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
422
        elif self.config.use_beta_sigmas:
423
424
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
425
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
426
427
428
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
429
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
430
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
431
432
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
433
434

        if self.config.final_sigmas_type == "sigma_min":
435
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
436
437
438
439
440
441
442
443
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
            )

        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
444

445
446
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
447
448
449

        self.num_inference_steps = len(timesteps)

450
451
452
453
454
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0

455
456
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
457
        self._begin_index = None
458
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
459

460
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
461
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
462
463
464
465
466
467
468
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
469
        https://huggingface.co/papers/2205.11487
470
471
        """
        dtype = sample.dtype
472
        batch_size, channels, *remaining_dims = sample.shape
473
474
475
476
477

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
478
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
479
480
481
482
483
484
485
486
487
488

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

489
        sample = sample.reshape(batch_size, channels, *remaining_dims)
490
491
492
        sample = sample.to(dtype)

        return sample
493

494
495
496
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
497
        log_sigma = np.log(np.maximum(sigma, 1e-10))
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

518
    def _sigma_to_alpha_sigma_t(self, sigma):
519
520
521
522
523
524
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
525
526
527

        return alpha_t, sigma_t

528
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
529
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
530
531
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
546
547
548
549
550
551
552
553

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

554
    def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor:
555
556
557
558
559
560
561
562
563
564
565
566
        """Constructs the noise schedule of Lu et al. (2022)."""

        lambda_min: float = in_lambdas[-1].item()
        lambda_max: float = in_lambdas[0].item()

        rho = 1.0  # 1.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = lambda_min ** (1 / rho)
        max_inv_rho = lambda_max ** (1 / rho)
        lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return lambdas

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

586
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
587
588
        return sigmas

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

610
        sigmas = np.array(
611
612
613
614
615
616
617
618
619
620
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

621
    def convert_model_output(
622
        self,
623
        model_output: torch.Tensor,
624
        *args,
625
        sample: torch.Tensor = None,
626
        **kwargs,
627
    ) -> torch.Tensor:
628
        """
629
630
631
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.
632

633
        <Tip>
634

635
636
637
638
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.

        </Tip>
639
640

        Args:
641
            model_output (`torch.Tensor`):
642
                The direct output from the learned diffusion model.
643
            sample (`torch.Tensor`):
644
                A current instance of a sample created by the diffusion process.
645
646

        Returns:
647
            `torch.Tensor`:
648
                The converted model output.
649
        """
650
651
652
653
654
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
655
                raise ValueError("missing `sample` as a required keyword argument")
656
657
658
659
660
661
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
662

663
        # DPM-Solver++ needs to solve an integral of the data prediction model.
664
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
665
            if self.config.prediction_type == "epsilon":
666
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
667
                if self.config.variance_type in ["learned", "learned_range"]:
668
                    model_output = model_output[:, :3]
669
670
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
671
                x0_pred = (sample - sigma_t * model_output) / alpha_t
672
            elif self.config.prediction_type == "sample":
673
                x0_pred = model_output
674
            elif self.config.prediction_type == "v_prediction":
675
676
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
677
                x0_pred = alpha_t * sample - sigma_t * model_output
678
679
680
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
681
682
            else:
                raise ValueError(
683
684
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the DPMSolverMultistepScheduler."
685
686
                )

687
            if self.config.thresholding:
688
689
                x0_pred = self._threshold_sample(x0_pred)

690
            return x0_pred
691

692
        # DPM-Solver needs to solve an integral of the noise prediction model.
693
        elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
694
            if self.config.prediction_type == "epsilon":
695
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
696
697
698
699
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
700
            elif self.config.prediction_type == "sample":
701
702
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
703
                epsilon = (sample - alpha_t * model_output) / sigma_t
704
            elif self.config.prediction_type == "v_prediction":
705
706
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
707
                epsilon = alpha_t * model_output + sigma_t * sample
708
709
            else:
                raise ValueError(
710
711
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverMultistepScheduler."
712
                )
713

714
            if self.config.thresholding:
715
716
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
717
718
719
720
721
722
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

723
724
    def dpm_solver_first_order_update(
        self,
725
        model_output: torch.Tensor,
726
        *args,
727
728
        sample: torch.Tensor = None,
        noise: Optional[torch.Tensor] = None,
729
        **kwargs,
730
    ) -> torch.Tensor:
731
        """
732
        One step for the first-order DPMSolver (equivalent to DDIM).
733
734

        Args:
735
            model_output (`torch.Tensor`):
736
                The direct output from the learned diffusion model.
737
            sample (`torch.Tensor`):
738
                A current instance of a sample created by the diffusion process.
739
740

        Returns:
741
            `torch.Tensor`:
742
                The sample tensor at the previous timestep.
743
        """
744
745
746
747
748
749
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
750
                raise ValueError("missing `sample` as a required keyword argument")
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

771
772
773
774
775
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            x_t = (
                (alpha_t / alpha_s) * sample
                - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
                + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
            )
790
791
792
793
        return x_t

    def multistep_dpm_solver_second_order_update(
        self,
794
        model_output_list: List[torch.Tensor],
795
        *args,
796
797
        sample: torch.Tensor = None,
        noise: Optional[torch.Tensor] = None,
798
        **kwargs,
799
    ) -> torch.Tensor:
800
        """
801
        One step for the second-order multistep DPMSolver.
802
803

        Args:
804
            model_output_list (`List[torch.Tensor]`):
805
                The direct outputs from learned diffusion model at current and latter timesteps.
806
            sample (`torch.Tensor`):
807
                A current instance of a sample created by the diffusion process.
808
809

        Returns:
810
            `torch.Tensor`:
811
                The sample tensor at the previous timestep.
812
        """
813
814
815
816
817
818
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
819
                raise ValueError("missing `sample` as a required keyword argument")
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

848
        m0, m1 = model_output_list[-1], model_output_list[-2]
849

850
851
852
853
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
854
            # See https://huggingface.co/papers/2211.01095 for detailed derivations
855
856
857
858
859
860
861
862
863
864
865
866
867
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
868
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
869
870
871
872
873
874
875
876
877
878
879
880
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
        elif self.config.algorithm_type == "sde-dpmsolver":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * (torch.exp(h) - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s0) * sample
                    - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
                )
913
914
915
916
        return x_t

    def multistep_dpm_solver_third_order_update(
        self,
917
        model_output_list: List[torch.Tensor],
918
        *args,
919
        sample: torch.Tensor = None,
StAlKeR7779's avatar
StAlKeR7779 committed
920
        noise: Optional[torch.Tensor] = None,
921
        **kwargs,
922
    ) -> torch.Tensor:
923
        """
924
        One step for the third-order multistep DPMSolver.
925
926

        Args:
927
            model_output_list (`List[torch.Tensor]`):
928
                The direct outputs from learned diffusion model at current and latter timesteps.
929
            sample (`torch.Tensor`):
930
                A current instance of a sample created by diffusion process.
931
932

        Returns:
933
            `torch.Tensor`:
934
                The sample tensor at the previous timestep.
935
        """
936
937
938
939
940
941
942

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
943
                raise ValueError("missing `sample` as a required keyword argument")
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
963
        )
964
965
966
967
968
969
970
971
972
973
974
975
976

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

977
978
979
980
981
982
983
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m0
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
        if self.config.algorithm_type == "dpmsolver++":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
984
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
985
986
987
988
989
990
991
            x_t = (
                (sigma_t / sigma_s0) * sample
                - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
            )
        elif self.config.algorithm_type == "dpmsolver":
Quentin Gallouédec's avatar
Quentin Gallouédec committed
992
            # See https://huggingface.co/papers/2206.00927 for detailed derivations
993
994
995
996
997
998
            x_t = (
                (alpha_t / alpha_s0) * sample
                - (sigma_t * (torch.exp(h) - 1.0)) * D0
                - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
            )
StAlKeR7779's avatar
StAlKeR7779 committed
999
1000
1001
1002
1003
1004
1005
1006
1007
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s0 * torch.exp(-h)) * sample
                + (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
                + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                + (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
1008
1009
        return x_t

1010
1011
1012
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
1013

1014
        index_candidates = (schedule_timesteps == timestep).nonzero()
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        return step_index

    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
1040

1041
1042
    def step(
        self,
1043
        model_output: torch.Tensor,
1044
        timestep: Union[int, torch.Tensor],
1045
        sample: torch.Tensor,
1046
        generator=None,
1047
        variance_noise: Optional[torch.Tensor] = None,
1048
1049
1050
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
1051
1052
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep DPMSolver.
1053
1054

        Args:
1055
            model_output (`torch.Tensor`):
1056
1057
1058
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1059
            sample (`torch.Tensor`):
1060
1061
1062
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
1063
            variance_noise (`torch.Tensor`):
1064
1065
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`LEdits++`].
1066
1067
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
1068
1069

        Returns:
1070
1071
1072
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
1073
1074
1075
1076
1077
1078
1079

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

1080
1081
1082
        if self.step_index is None:
            self._init_step_index(timestep)

1083
1084
        # Improve numerical stability for small number of steps
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
1085
1086
1087
            self.config.euler_at_final
            or (self.config.lower_order_final and len(self.timesteps) < 15)
            or self.config.final_sigmas_type == "zero"
1088
1089
        )
        lower_order_second = (
1090
            (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
1091
1092
        )

1093
        model_output = self.convert_model_output(model_output, sample=sample)
1094
1095
1096
1097
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

1098
1099
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)
1100
        if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
1101
            noise = randn_tensor(
1102
                model_output.shape, generator=generator, device=model_output.device, dtype=torch.float32
1103
            )
1104
1105
        elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
            noise = variance_noise.to(device=model_output.device, dtype=torch.float32)
1106
1107
1108
        else:
            noise = None

1109
        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
1110
            prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
1111
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
1112
            prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
1113
        else:
StAlKeR7779's avatar
StAlKeR7779 committed
1114
            prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample, noise=noise)
1115
1116
1117
1118

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

1119
1120
1121
        # Cast sample back to expected dtype
        prev_sample = prev_sample.to(model_output.dtype)

1122
1123
1124
        # upon completion increase step index by one
        self._step_index += 1

1125
1126
1127
1128
1129
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1130
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1131
1132
1133
1134
1135
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1136
            sample (`torch.Tensor`):
1137
                The input sample.
1138
1139

        Returns:
1140
            `torch.Tensor`:
1141
                A scaled input sample.
1142
1143
1144
1145
1146
        """
        return sample

    def add_noise(
        self,
1147
1148
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1149
        timesteps: torch.IntTensor,
1150
    ) -> torch.Tensor:
1151
1152
1153
1154
1155
1156
1157
1158
1159
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1160

1161
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1162
1163
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1164
1165
1166
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1167
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1168
            # add noise is called before first denoising step to create initial latent(img2img)
1169
            step_indices = [self.begin_index] * timesteps.shape[0]
1170

1171
1172
1173
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1174

1175
1176
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1177
1178
1179
1180
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps