test_modeling_utils.py 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

Patrick von Platen's avatar
Patrick von Platen committed
17
import os
18
19
20
import random
import tempfile
import unittest
Patrick von Platen's avatar
improve  
Patrick von Platen committed
21
from distutils.util import strtobool
22
23
24

import torch

Patrick von Platen's avatar
improve  
Patrick von Platen committed
25
from diffusers import GaussianDDPMScheduler, UNetModel
26
from diffusers.configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
27
from diffusers.pipeline_utils import DiffusionPipeline
Patrick von Platen's avatar
Patrick von Platen committed
28
from models.vision.ddim.modeling_ddim import DDIM
Patrick von Platen's avatar
Patrick von Platen committed
29
from models.vision.ddpm.modeling_ddpm import DDPM
30
31
32


global_rng = random.Random()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
33
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
34
torch.backends.cuda.matmul.allow_tf32 = False
Patrick von Platen's avatar
Patrick von Platen committed
35
36


Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):
        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
                self.register(a=a, b=b, c=c, d=d, e=e)

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


120
class ModelTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
121
122
    @property
    def dummy_input(self):
Patrick von Platen's avatar
up  
Patrick von Platen committed
123
        batch_size = 4
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes)
        time_step = torch.tensor([10])

        return (noise, time_step)

132
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
133
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
134
135
136
137
138

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)

Patrick von Platen's avatar
Patrick von Platen committed
139
        dummy_input = self.dummy_input
140

Patrick von Platen's avatar
Patrick von Platen committed
141
142
        image = model(*dummy_input)
        new_image = new_model(*dummy_input)
143
144

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
145
146
147
148
149
150
151

    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")

        image = model(*self.dummy_input)

        assert image is not None, "Make sure output is not None"
152
153
154


class SamplerTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
155
156
    @slow
    def test_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
157
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
158
159
160
161
162
163

        # 1. Load models
        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
164
165
166
        image = scheduler.sample_noise(
            (1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator
        )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
167
168
169
170

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
171
172
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
Patrick von Platen committed
173
174
175
176
177
178
179
180
            image_coeff = (
                (1 - scheduler.get_alpha_prod(t - 1))
                * torch.sqrt(scheduler.get_alpha(t))
                / (1 - scheduler.get_alpha_prod(t))
            )
            clipped_coeff = (
                torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
            )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
181
182
183
184
185
186
187

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
188
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
189
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
190
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        # Note: The better test is to simply check with the following lines of code that the image is sensible
        # import PIL
        # import numpy as np
        # image_processed = image.cpu().permute(0, 2, 3, 1)
        # image_processed = (image_processed + 1.0) * 127.5
        # image_processed = image_processed.numpy().astype(np.uint8)
        # image_pil = PIL.Image.fromarray(image_processed[0])
        # image_pil.save("test.png")

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
210
211
212
        expected_slice = torch.tensor(
            [-0.1636, -0.1765, -0.1968, -0.1338, -0.1432, -0.1622, -0.1793, -0.2001, -0.2280]
        )
Patrick von Platen's avatar
Patrick von Platen committed
213
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
Patrick von Platen's avatar
improve  
Patrick von Platen committed
214
215
216

    def test_sample_fast(self):
        # 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
217
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
218
219
220
221
222

        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
        image = scheduler.sample_noise(
            (1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator
        )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
226
227
228
229

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
230
231
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
236
237
238
239
            image_coeff = (
                (1 - scheduler.get_alpha_prod(t - 1))
                * torch.sqrt(scheduler.get_alpha(t))
                / (1 - scheduler.get_alpha_prod(t))
            )
            clipped_coeff = (
                torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
            )
Patrick von Platen's avatar
improve  
Patrick von Platen committed
240
241
242
243
244
245
246

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
247
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
248
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
249
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
250
251
252
253
254
255
256
257
258
259

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
260
        expected_slice = torch.tensor([-0.0304, -0.1895, -0.2436, -0.9837, -0.5422, 0.1931, -0.8175, 0.0862, -0.7783])
Patrick von Platen's avatar
Patrick von Platen committed
261
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
262
263
264
265
266
267
268
269
270
271
272
273
274


class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
        schedular = GaussianDDPMScheduler(timesteps=10)

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
275
276

        generator = torch.manual_seed(0)
277

patil-suraj's avatar
patil-suraj committed
278
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
279
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
280
        new_image = new_ddpm(generator=generator)
281
282
283
284
285
286
287
288
289
290
291
292
293

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
294
        generator = torch.manual_seed(0)
295

patil-suraj's avatar
patil-suraj committed
296
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
297
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
298
        new_image = ddpm_from_hub(generator=generator)
299
300

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_id)
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        ddim = DDIM.from_pretrained(model_id)
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
Patrick von Platen's avatar
Patrick von Platen committed
327
328
329
        expected_slice = torch.tensor(
            [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068]
        )
Patrick von Platen's avatar
Patrick von Platen committed
330
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2