test_modeling_utils.py 9.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
import random
import tempfile
import unittest
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
21
import os
from distutils.util import strtobool
22
23
24

import torch

Patrick von Platen's avatar
improve  
Patrick von Platen committed
25
from diffusers import GaussianDDPMScheduler, UNetModel
26
27
from diffusers.pipeline_utils import DiffusionPipeline
from models.vision.ddpm.modeling_ddpm import DDPM
28
29
30


global_rng = random.Random()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
31
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
32
torch.backends.cuda.matmul.allow_tf32 = False
Patrick von Platen's avatar
Patrick von Platen committed
33
34


Patrick von Platen's avatar
improve  
Patrick von Platen committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


class ModelTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
81
82
    @property
    def dummy_input(self):
Patrick von Platen's avatar
up  
Patrick von Platen committed
83
        batch_size = 4
Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
87
88
89
90
91
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes)
        time_step = torch.tensor([10])

        return (noise, time_step)

92
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
93
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
94
95
96
97
98

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)

Patrick von Platen's avatar
Patrick von Platen committed
99
        dummy_input = self.dummy_input
100

Patrick von Platen's avatar
Patrick von Platen committed
101
102
        image = model(*dummy_input)
        new_image = new_model(*dummy_input)
103
104

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
105
106
107
108
109
110
111

    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")

        image = model(*self.dummy_input)

        assert image is not None, "Make sure output is not None"
112
113
114
115


class SamplerTesterMixin(unittest.TestCase):

Patrick von Platen's avatar
improve  
Patrick von Platen committed
116
117
    @slow
    def test_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
118
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
119
120
121
122
123
124
125
126
127
128
129

        # 1. Load models
        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
130
131
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
132
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
133
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
134
135
136
137
138
139
140

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
141
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
142
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
143
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        # Note: The better test is to simply check with the following lines of code that the image is sensible
        # import PIL
        # import numpy as np
        # image_processed = image.cpu().permute(0, 2, 3, 1)
        # image_processed = (image_processed + 1.0) * 127.5
        # image_processed = image_processed.numpy().astype(np.uint8)
        # image_pil = PIL.Image.fromarray(image_processed[0])
        # image_pil.save("test.png")

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
163
        import ipdb; ipdb.set_trace()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
164
165
166
167
        assert (image_slice - torch.tensor([[-0.0598, -0.0611, -0.0506], [-0.0726, 0.0220, 0.0103], [-0.0723, -0.1310, -0.2458]])).abs().sum() < 1e-3

    def test_sample_fast(self):
        # 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
168
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
169
170
171
172
173
174
175
176
177
178

        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
179
180
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
181
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
182
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
183
184
185
186
187
188
189

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
190
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
191
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
192
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
193
194
195
196
197
198
199
200
201
202

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
203
204
        expected_slice = torch.tensor([-0.0304, -0.1895, -0.2436, -0.9837, -0.5422, 0.1931, -0.8175, 0.0862, -0.7783])
        assert (image_slice.flatten() - expected_slice).abs().sum() < 1e-3
205
206
207
208
209
210
211
212
213
214
215
216
217


class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
        schedular = GaussianDDPMScheduler(timesteps=10)

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
218
219

        generator = torch.manual_seed(0)
220

patil-suraj's avatar
patil-suraj committed
221
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
222
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
223
        new_image = new_ddpm(generator=generator)
224
225
226
227
228
229
230
231
232
233
234
235
236

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
237
        generator = torch.manual_seed(0)
238

patil-suraj's avatar
patil-suraj committed
239
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
240
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
241
        new_image = ddpm_from_hub(generator=generator)
242
243

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"