test_stable_diffusion.py 59.1 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17
import gc
18
import tempfile
19
import time
20
import traceback
21
22
23
24
import unittest

import numpy as np
import torch
25
from huggingface_hub import hf_hub_download
Aryan's avatar
Aryan committed
26
27
28
29
30
from transformers import (
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
)
31
32
33
34

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
35
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
36
37
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
40
41
42
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
43
    logging,
44
)
45
46
47
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Patrick von Platen's avatar
Patrick von Platen committed
48
    load_image,
Dhruv Nair's avatar
Dhruv Nair committed
49
50
    load_numpy,
    nightly,
51
    numpy_cosine_similarity_distance,
52
    require_accelerate_version_greater,
Dhruv Nair's avatar
Dhruv Nair committed
53
    require_python39_or_higher,
54
55
    require_torch_2,
    require_torch_gpu,
56
    require_torch_multi_gpu,
57
    run_test_in_subprocess,
58
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
59
60
    slow,
    torch_device,
61
)
62

63
64
65
66
67
68
from ..pipeline_params import (
    TEXT_TO_IMAGE_BATCH_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
    TEXT_TO_IMAGE_IMAGE_PARAMS,
    TEXT_TO_IMAGE_PARAMS,
)
Aryan's avatar
Aryan committed
69
70
71
72
73
74
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
75

76

77
78
79
80
81
82
enable_full_determinism()


# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
83
    try:
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)

        sd_pipe.unet.to(memory_format=torch.channels_last)
        sd_pipe.unet = torch.compile(sd_pipe.unet, mode="reduce-overhead", fullgraph=True)

        sd_pipe.set_progress_bar_config(disable=None)

        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
103

104
105
106
107
108
109
110
        assert np.abs(image_slice - expected_slice).max() < 5e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()
111
112


113
class StableDiffusionPipelineFastTests(
Aryan's avatar
Aryan committed
114
115
116
117
118
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
119
):
120
    pipeline_class = StableDiffusionPipeline
121
122
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
123
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
124
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
125
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
126

Patrick von Platen's avatar
Patrick von Platen committed
127
    def get_dummy_components(self, time_cond_proj_dim=None):
128
129
        cross_attention_dim = 8

130
        torch.manual_seed(0)
131
        unet = UNet2DConditionModel(
132
133
            block_out_channels=(4, 8),
            layers_per_block=1,
134
            sample_size=32,
Patrick von Platen's avatar
Patrick von Platen committed
135
            time_cond_proj_dim=time_cond_proj_dim,
136
137
138
139
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
140
            cross_attention_dim=cross_attention_dim,
141
            norm_num_groups=2,
142
        )
143
144
145
146
147
148
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
149
150
        )
        torch.manual_seed(0)
151
        vae = AutoencoderKL(
152
            block_out_channels=[4, 8],
153
154
155
156
157
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
158
            norm_num_groups=2,
159
160
        )
        torch.manual_seed(0)
161
        text_encoder_config = CLIPTextConfig(
162
163
            bos_token_id=0,
            eos_token_id=2,
164
165
            hidden_size=cross_attention_dim,
            intermediate_size=16,
166
            layer_norm_eps=1e-05,
167
168
            num_attention_heads=2,
            num_hidden_layers=2,
169
170
171
            pad_token_id=1,
            vocab_size=1000,
        )
172
173
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
174

175
176
177
178
179
180
181
182
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
183
            "image_encoder": None,
184
185
186
187
188
189
190
191
192
193
194
195
196
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
Aryan's avatar
Aryan committed
197
            "output_type": "np",
198
199
        }
        return inputs
200
201
202
203

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

204
205
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
206
        sd_pipe = sd_pipe.to(torch_device)
207
208
        sd_pipe.set_progress_bar_config(disable=None)

209
210
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
211
212
213
214
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

215
        assert image.shape == (1, 64, 64, 3)
216
        expected_slice = np.array([0.1763, 0.4776, 0.4986, 0.2566, 0.3802, 0.4596, 0.5363, 0.3277, 0.3949])
217
218
219

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def test_stable_diffusion_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
236
        expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133])
Patrick von Platen's avatar
Patrick von Platen committed
237
238
239

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    def test_stable_diffusion_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
258
        expected_slice = np.array([0.2368, 0.4900, 0.5019, 0.2723, 0.4473, 0.4578, 0.4551, 0.3532, 0.4133])
259
260
261

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    def test_stable_diffusion_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    def test_stable_diffusion_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = sd_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=sd_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            embeds.append(sd_pipe.text_encoder(text_inputs)[0])

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    def test_stable_diffusion_prompt_embeds_with_plain_negative_prompt_list(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["negative_prompt"] = negative_prompt
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = sd_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=sd_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = sd_pipe.text_encoder(text_inputs)[0]

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

377
378
379
    def test_stable_diffusion_ddim_factor_8(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

380
381
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
382
383
384
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

385
386
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs, height=136, width=136)
387
388
389
390
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

391
        assert image.shape == (1, 136, 136, 3)
392
        expected_slice = np.array([0.4720, 0.5426, 0.5160, 0.3961, 0.4696, 0.4296, 0.5738, 0.5888, 0.5481])
393
394
395
396
397

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
398
399
400
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = PNDMScheduler(skip_prk_steps=True)
401
402
403
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

404
405
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
406
407
408
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

409
        assert image.shape == (1, 64, 64, 3)
410
        expected_slice = np.array([0.1941, 0.4748, 0.4880, 0.2222, 0.4221, 0.4545, 0.5604, 0.3488, 0.3902])
411

412
413
414
415
416
417
418
419
420
421
422
423
424
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_no_safety_checker(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
        )
        assert isinstance(pipe, StableDiffusionPipeline)
        assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
        assert pipe.safety_checker is None

        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

425
426
427
428
429
430
431
432
433
434
        # check that there's no error when saving a pipeline with one of the models being None
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)

        # sanity check that the pipeline still works
        assert pipe.safety_checker is None
        image = pipe("example prompt", num_inference_steps=2).images[0]
        assert image is not None

435
436
    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
hlky's avatar
hlky committed
437

438
439
440
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
441
442
443
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

444
445
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
446
447
448
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

449
        assert image.shape == (1, 64, 64, 3)
450
        expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855])
451

hlky's avatar
hlky committed
452
453
454
455
456
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

457
458
459
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
hlky's avatar
hlky committed
460
461
462
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

463
464
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
hlky's avatar
hlky committed
465
466
467
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

468
        assert image.shape == (1, 64, 64, 3)
469
        expected_slice = np.array([0.2682, 0.4782, 0.4855, 0.2424, 0.4472, 0.4479, 0.5612, 0.3676, 0.3854])
470

hlky's avatar
hlky committed
471
472
473
474
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
475

476
477
478
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
479
480
481
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

482
483
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
484
485
486
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

487
        assert image.shape == (1, 64, 64, 3)
488
        expected_slice = np.array([0.2681, 0.4785, 0.4857, 0.2426, 0.4473, 0.4481, 0.5610, 0.3676, 0.3855])
489

490
491
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

492
493
    def test_stable_diffusion_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
494
495
496
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
497
498
499
500
501
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        image_count = 4

502
503
504
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_1 = sd_pipe(**inputs)
505
506
507

        # make sure sliced vae decode yields the same result
        sd_pipe.enable_vae_slicing()
508
509
510
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        output_2 = sd_pipe(**inputs)
511
512
513
514

        # there is a small discrepancy at image borders vs. full batch decode
        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 3e-3

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    def test_stable_diffusion_vae_tiling(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        components["safety_checker"] = None
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        generator = torch.Generator(device=device).manual_seed(0)
        output_1 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        # make sure tiled vae decode yields the same result
        sd_pipe.enable_vae_tiling()
        generator = torch.Generator(device=device).manual_seed(0)
        output_2 = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")

        assert np.abs(output_2.images.flatten() - output_1.images.flatten()).max() < 5e-1

538
539
540
541
542
543
        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
            zeros = torch.zeros(shape).to(device)
            sd_pipe.vae.decode(zeros)

544
545
    def test_stable_diffusion_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
546
547
548
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
549
550
551
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

552
        inputs = self.get_dummy_inputs(device)
553
        negative_prompt = "french fries"
554
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
555
556
557
558

        image = output.images
        image_slice = image[0, -3:, -3:, -1]

559
        assert image.shape == (1, 64, 64, 3)
560
        expected_slice = np.array([0.1907, 0.4709, 0.4858, 0.2224, 0.4223, 0.4539, 0.5606, 0.3489, 0.3900])
561

562
563
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

564
    def test_stable_diffusion_long_prompt(self):
565
566
567
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
568
569
570
571
572
573
574
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
575
        logger.setLevel(logging.WARNING)
576
577
578

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
579
            negative_text_embeddings, text_embeddings = sd_pipe.encode_prompt(
580
581
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
582
583
            if negative_text_embeddings is not None:
                text_embeddings = torch.cat([negative_text_embeddings, text_embeddings])
584

585
586
587
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25

588
589
        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
590
            negative_text_embeddings_2, text_embeddings_2 = sd_pipe.encode_prompt(
591
592
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
593
594
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
595

596
597
598
599
600
601
602
603
604
605
        assert cap_logger.out == cap_logger_2.out

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            negative_text_embeddings_3, text_embeddings_3 = sd_pipe.encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
            if negative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negative_text_embeddings_3, text_embeddings_3])

606
607
608
609
        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77
        assert cap_logger_3.out == ""

610
    def test_stable_diffusion_height_width_opt(self):
611
612
613
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
614
615
616
617
618
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"

619
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
620
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
621
        assert image_shape == (64, 64)
622

623
        output = sd_pipe(prompt, num_inference_steps=1, height=96, width=96, output_type="np")
624
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
625
        assert image_shape == (96, 96)
626
627
628

        config = dict(sd_pipe.unet.config)
        config["sample_size"] = 96
Patrick von Platen's avatar
Patrick von Platen committed
629
        sd_pipe.unet = UNet2DConditionModel.from_config(config).to(torch_device)
630
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np")
631
        image_shape = output.images[0].shape[:2]
Patrick von Platen's avatar
Patrick von Platen committed
632
        assert image_shape == (192, 192)
633

634
635
636
637
638
639
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

640
641
    # MPS currently doesn't support ComplexFloats, which are required for freeU - see https://github.com/huggingface/diffusers/issues/7569.
    @skip_mps
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    def test_freeu_enabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        output_freeu = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."

    def test_freeu_disabled(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        output = sd_pipe(prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)).images

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        sd_pipe.disable_freeu()

        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in sd_pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        output_no_freeu = sd_pipe(
            prompt, num_inference_steps=1, output_type="np", generator=torch.manual_seed(0)
        ).images

        assert np.allclose(
            output[0, -3:, -3:, -1], output_no_freeu[0, -3:, -3:, -1]
        ), "Disabling of FreeU should lead to results similar to the default pipeline results."

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        sd_pipe.fuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        sd_pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."

Dhruv Nair's avatar
Dhruv Nair committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    def test_pipeline_interrupt(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "hey"
        num_inference_steps = 3

        # store intermediate latents from the generation process
        class PipelineState:
            def __init__(self):
                self.state = []

            def apply(self, pipe, i, t, callback_kwargs):
                self.state.append(callback_kwargs["latents"])
                return callback_kwargs

        pipe_state = PipelineState()
        sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="np",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=pipe_state.apply,
        ).images

        # interrupt generation at step index
        interrupt_step_idx = 1

        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if i == interrupt_step_idx:
                pipe._interrupt = True

            return callback_kwargs

        output_interrupted = sd_pipe(
            prompt,
            num_inference_steps=num_inference_steps,
            output_type="latent",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=callback_on_step_end,
        ).images

        # fetch intermediate latents at the interrupted step
        # from the completed generation process
        intermediate_latent = pipe_state.state[interrupt_step_idx]

        # compare the intermediate latent to the output of the interrupted process
        # they should be the same
        assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

766
767

@slow
768
@require_torch_gpu
769
class StableDiffusionPipelineSlowTests(unittest.TestCase):
770
    def setUp(self):
771
772
773
        gc.collect()
        torch.cuda.empty_cache()

774
775
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
776
777
778
779
780
781
782
783
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
784
            "output_type": "np",
785
786
787
788
        }
        return inputs

    def test_stable_diffusion_1_1_pndm(self):
789
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-1")
790
791
792
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

793
794
795
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
796

797
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
798
        expected_slice = np.array([0.4363, 0.4355, 0.3667, 0.4066, 0.3970, 0.3866, 0.4394, 0.4356, 0.4059])
799
        assert np.abs(image_slice - expected_slice).max() < 3e-3
800

801
802
803
804
805
806
807
808
809
810
811
812
813
814
    def test_stable_diffusion_v1_4_with_freeu(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25

        sd_pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        image = sd_pipe(**inputs).images
        image = image[0, -3:, -3:, -1].flatten()
        expected_image = [0.0721, 0.0588, 0.0268, 0.0384, 0.0636, 0.0, 0.0429, 0.0344, 0.0309]
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

815
816
817
818
    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
819

820
821
822
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
823

824
        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
825
        expected_slice = np.array([0.5740, 0.4784, 0.3162, 0.6358, 0.5831, 0.5505, 0.5082, 0.5631, 0.5575])
826
        assert np.abs(image_slice - expected_slice).max() < 3e-3
827

828
829
830
    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
831
832
833
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

834
835
836
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
837

838
839
840
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.38019, 0.28647, 0.27321, 0.40377, 0.38290, 0.35446, 0.39218, 0.38165, 0.42239])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
841

842
843
844
845
846
847
848
849
850
    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
851
852

        assert image.shape == (1, 512, 512, 3)
853
        expected_slice = np.array([0.10542, 0.09620, 0.07332, 0.09015, 0.09382, 0.07597, 0.08496, 0.07806, 0.06455])
854
        assert np.abs(image_slice - expected_slice).max() < 3e-3
855

856
857
    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
858
859
860
861
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(
            sd_pipe.scheduler.config,
            final_sigmas_type="sigma_min",
        )
862
863
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
864

865
866
867
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
868
869

        assert image.shape == (1, 512, 512, 3)
870
        expected_slice = np.array([0.03503, 0.03494, 0.01087, 0.03128, 0.02552, 0.00803, 0.00742, 0.00372, 0.00000])
871
        assert np.abs(image_slice - expected_slice).max() < 3e-3
872

873
    def test_stable_diffusion_attention_slicing(self):
874
        torch.cuda.reset_peak_memory_stats()
875
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
876
        pipe.unet.set_default_attn_processor()
877
        pipe = pipe.to(torch_device)
878
879
        pipe.set_progress_bar_config(disable=None)

880
        # enable attention slicing
881
        pipe.enable_attention_slicing()
882
883
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
884
885
886
887
888
889

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

890
        # disable slicing
891
        pipe.disable_attention_slicing()
892
        pipe.unet.set_default_attn_processor()
893
894
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
895
896
897
898

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
899
900
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-3
901

902
903
    def test_stable_diffusion_vae_slicing(self):
        torch.cuda.reset_peak_memory_stats()
904
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
905
        pipe = pipe.to(torch_device)
906
907
908
909
910
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        # enable vae slicing
        pipe.enable_vae_slicing()
911
912
913
914
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image_sliced = pipe(**inputs).images
915
916
917
918
919
920
921
922

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 4 GB is allocated
        assert mem_bytes < 4e9

        # disable vae slicing
        pipe.disable_vae_slicing()
923
924
925
926
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        inputs["prompt"] = [inputs["prompt"]] * 4
        inputs["latents"] = torch.cat([inputs["latents"]] * 4)
        image = pipe(**inputs).images
927
928
929
930
931

        # make sure that more than 4 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 4e9
        # There is a small discrepancy at the image borders vs. a fully batched version.
932
933
        max_diff = numpy_cosine_similarity_distance(image_sliced.flatten(), image.flatten())
        assert max_diff < 1e-2
934

935
936
937
    def test_stable_diffusion_vae_tiling(self):
        torch.cuda.reset_peak_memory_stats()
        model_id = "CompVis/stable-diffusion-v1-4"
938
939
940
        pipe = StableDiffusionPipeline.from_pretrained(
            model_id, revision="fp16", torch_dtype=torch.float16, safety_checker=None
        )
941
942
943
944
945
946
947
948
949
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
        pipe.vae = pipe.vae.to(memory_format=torch.channels_last)

        prompt = "a photograph of an astronaut riding a horse"

        # enable vae tiling
        pipe.enable_vae_tiling()
950
951
952
953
954
955
956
957
958
        pipe.enable_model_cpu_offload()
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_chunked = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
959
            output_type="np",
960
961
        )
        image_chunked = output_chunked.images
962
963
964
965
966

        mem_bytes = torch.cuda.max_memory_allocated()

        # disable vae tiling
        pipe.disable_vae_tiling()
967
968
969
970
971
972
973
974
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            [prompt],
            width=1024,
            height=1024,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
975
            output_type="np",
976
977
        )
        image = output.images
978

979
        assert mem_bytes < 1e10
980
981
        max_diff = numpy_cosine_similarity_distance(image_chunked.flatten(), image.flatten())
        assert max_diff < 1e-2
982

983
    def test_stable_diffusion_fp16_vs_autocast(self):
984
985
        # this test makes sure that the original model with autocast
        # and the new model with fp16 yield the same result
986
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
987
        pipe = pipe.to(torch_device)
988
989
        pipe.set_progress_bar_config(disable=None)

990
991
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_fp16 = pipe(**inputs).images
992
993

        with torch.autocast(torch_device):
994
995
            inputs = self.get_inputs(torch_device)
            image_autocast = pipe(**inputs).images
996
997

        # Make sure results are close enough
998
        diff = np.abs(image_fp16.flatten() - image_autocast.flatten())
999
1000
1001
1002
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
        assert diff.mean() < 2e-2

1003
    def test_stable_diffusion_intermediate_state(self):
1004
1005
        number_of_steps = 0

1006
1007
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
1008
1009
            nonlocal number_of_steps
            number_of_steps += 1
1010
            if step == 1:
1011
1012
1013
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1014
1015
1016
1017
1018
                expected_slice = np.array(
                    [-0.5693, -0.3018, -0.9746, 0.0518, -0.8770, 0.7559, -1.7402, 0.1022, 1.1582]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1019
            elif step == 2:
1020
1021
1022
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
1023
1024
1025
1026
1027
                expected_slice = np.array(
                    [-0.1958, -0.2993, -1.0166, -0.5005, -0.4810, 0.6162, -0.9492, 0.6621, 1.4492]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
1028

1029
        callback_fn.has_been_called = False
1030

1031
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1032
1033
1034
1035
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

1036
1037
1038
1039
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
1040

1041
    def test_stable_diffusion_low_cpu_mem_usage(self):
1042
1043
1044
        pipeline_id = "CompVis/stable-diffusion-v1-4"

        start_time = time.time()
1045
        pipeline_low_cpu_mem_usage = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16)
1046
1047
        pipeline_low_cpu_mem_usage.to(torch_device)
        low_cpu_mem_usage_time = time.time() - start_time
1048
1049

        start_time = time.time()
1050
        _ = StableDiffusionPipeline.from_pretrained(pipeline_id, torch_dtype=torch.float16, low_cpu_mem_usage=False)
1051
        normal_load_time = time.time() - start_time
1052

1053
        assert 2 * low_cpu_mem_usage_time < normal_load_time
1054

1055
    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
1056
1057
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1058
        torch.cuda.reset_peak_memory_stats()
1059

1060
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
1061
1062
1063
1064
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
1065

1066
1067
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
1068
1069

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
1070
1071
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1086
        pipe.unet.set_default_attn_processor()
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        )
1099
        pipe.unet.set_default_attn_processor()
1100
1101
1102
1103
1104
1105
1106

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
1107
1108
        inputs = self.get_inputs(torch_device, dtype=torch.float16)

1109
1110
1111
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

1112
1113
1114
1115
1116
        images = outputs.images
        offloaded_images = outputs_offloaded.images

        max_diff = numpy_cosine_similarity_distance(images.flatten(), offloaded_images.flatten())
        assert max_diff < 1e-3
1117
1118
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3.5 * 10**9
1119
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()

        assert mem_bytes_slicing < mem_bytes_offloaded
        assert mem_bytes_slicing < 3 * 10**9

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
    def test_stable_diffusion_textual_inversion(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)
        pipe.to("cuda")

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
1157
        assert max_diff < 8e-1
1158

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    def test_stable_diffusion_textual_inversion_with_model_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_model_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

    def test_stable_diffusion_textual_inversion_with_sequential_cpu_offload(self):
        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.enable_sequential_cpu_offload()
        pipe.load_textual_inversion("sd-concepts-library/low-poly-hd-logos-icons")

        a111_file = hf_hub_download("hf-internal-testing/text_inv_embedding_a1111_format", "winter_style.pt")
        a111_file_neg = hf_hub_download(
            "hf-internal-testing/text_inv_embedding_a1111_format", "winter_style_negative.pt"
        )
        pipe.load_textual_inversion(a111_file)
        pipe.load_textual_inversion(a111_file_neg)

        generator = torch.Generator(device="cpu").manual_seed(1)

        prompt = "An logo of a turtle in strong Style-Winter with <low-poly-hd-logos-icons>"
        neg_prompt = "Style-Winter-neg"

        image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, output_type="np").images[0]
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_inv/winter_logo_style.npy"
        )

        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 8e-1

Dhruv Nair's avatar
Dhruv Nair committed
1209
    @require_python39_or_higher
1210
    @require_torch_2
1211
    def test_stable_diffusion_compile(self):
1212
1213
1214
1215
1216
1217
1218
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=inputs)
1219

Patrick von Platen's avatar
Patrick von Platen committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    def test_stable_diffusion_lcm(self):
        unet = UNet2DConditionModel.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", subfolder="unet")
        sd_pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", unet=unet).to(torch_device)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 6
        inputs["output_type"] = "pil"

        image = sd_pipe(**inputs).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_full/stable_diffusion_lcm.png"
        )

        image = sd_pipe.image_processor.pil_to_numpy(image)
        expected_image = sd_pipe.image_processor.pil_to_numpy(expected_image)

        max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())

        assert max_diff < 1e-2

1243

1lint's avatar
1lint committed
1244
1245
1246
@slow
@require_torch_gpu
class StableDiffusionPipelineCkptTests(unittest.TestCase):
1247
1248
1249
1250
1251
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1lint's avatar
1lint committed
1252
1253
1254
1255
1256
1257
1258
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_download_from_hub(self):
        ckpt_paths = [
1259
1260
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
            "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors",
1lint's avatar
1lint committed
1261
1262
1263
        ]

        for ckpt_path in ckpt_paths:
Patrick von Platen's avatar
Patrick von Platen committed
1264
            pipe = StableDiffusionPipeline.from_single_file(ckpt_path, torch_dtype=torch.float16)
1lint's avatar
1lint committed
1265
1266
1267
1268
1269
1270
1271
1272
            pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
            pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_local(self):
1273
        ckpt_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-5-pruned-emaonly.safetensors")
1274
        config_filename = hf_hub_download("runwayml/stable-diffusion-v1-5", filename="v1-inference.yaml")
1lint's avatar
1lint committed
1275

1276
1277
1278
        pipe = StableDiffusionPipeline.from_single_file(
            ckpt_filename, config_files={"v1": config_filename}, torch_dtype=torch.float16
        )
1lint's avatar
1lint committed
1279
1280
1281
1282
1283
1284
1285
1286
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        image_out = pipe("test", num_inference_steps=1, output_type="np").images[0]

        assert image_out.shape == (512, 512, 3)


1287
1288
1289
@nightly
@require_torch_gpu
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
1290
1291
1292
1293
1294
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1295
1296
1297
1298
1299
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1300
1301
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1302
1303
1304
1305
1306
1307
1308
1309
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
1310
            "output_type": "np",
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
        }
        return inputs

    def test_stable_diffusion_1_4_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_1_5_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
1355
        assert max_diff < 3e-3
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_text2img/stable_diffusion_1_4_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503


# (sayakpaul): This test suite was run in the DGX with two GPUs (1, 2).
@slow
@require_torch_multi_gpu
@require_accelerate_version_greater("0.27.0")
class StableDiffusionPipelineDeviceMapTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, generator_device="cpu", seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "np",
        }
        return inputs

    def get_pipeline_output_without_device_map(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
        ).to(torch_device)
        sd_pipe.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        no_device_map_image = sd_pipe(**inputs).images

        del sd_pipe

        return no_device_map_image

    def test_forward_pass_balanced_device_map(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_components_put_in_right_devices(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )

        assert len(set(sd_pipe_with_device_map.hf_device_map.values())) >= 2

    def test_max_memory(self):
        no_device_map_image = self.get_pipeline_output_without_device_map()

        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5",
            device_map="balanced",
            max_memory={0: "1GB", 1: "1GB"},
            torch_dtype=torch.float16,
        )
        sd_pipe_with_device_map.set_progress_bar_config(disable=True)
        inputs = self.get_inputs()
        device_map_image = sd_pipe_with_device_map(**inputs).images

        max_diff = np.abs(device_map_image - no_device_map_image).max()
        assert max_diff < 1e-3

    def test_reset_device_map(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        for name, component in sd_pipe_with_device_map.components.items():
            if isinstance(component, torch.nn.Module):
                assert component.device.type == "cpu"

    def test_reset_device_map_to(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `to()` can be used and the pipeline can be called.
        pipe = sd_pipe_with_device_map.to("cuda")
        _ = pipe("hello", num_inference_steps=2)

    def test_reset_device_map_enable_model_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_model_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_model_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)

    def test_reset_device_map_enable_sequential_cpu_offload(self):
        sd_pipe_with_device_map = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", device_map="balanced", torch_dtype=torch.float16
        )
        sd_pipe_with_device_map.reset_device_map()

        assert sd_pipe_with_device_map.hf_device_map is None

        # Make sure `enable_sequential_cpu_offload()` can be used and the pipeline can be called.
        sd_pipe_with_device_map.enable_sequential_cpu_offload()
        _ = sd_pipe_with_device_map("hello", num_inference_steps=2)