scheduling_dpmsolver_singlestep.py 51 KB
Newer Older
1
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import deprecate, is_scipy_available, logging
25
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
26
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
27
28


29
30
31
if is_scipy_available():
    import scipy.stats

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


35
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
36
37
38
39
40
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
41
42
43
44
45
46
47
48
49
50
51
52
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
53
54
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
55
56
57
58

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
59
    if alpha_transform_type == "cosine":
60

YiYi Xu's avatar
YiYi Xu committed
61
62
63
64
65
66
67
68
69
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
70
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
71
72
73
74
75

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
76
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
77
78
79
80
81
    return torch.tensor(betas, dtype=torch.float32)


class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
    """
82
    `DPMSolverSinglestepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
83

84
85
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
86
87

    Args:
88
89
90
91
92
93
94
95
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
96
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
97
98
99
100
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        solver_order (`int`, defaults to 2):
            The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
101
            sampling, and `solver_order=3` for unconditional sampling.
102
103
104
105
106
107
108
109
110
111
112
113
114
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
            `algorithm_type="dpmsolver++"`.
        algorithm_type (`str`, defaults to `dpmsolver++`):
115
116
117
118
119
            Algorithm type for the solver; can be `dpmsolver` or `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver`
            type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927) paper, and the
            `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095)
            paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided
            sampling like in Stable Diffusion.
120
121
122
123
124
125
        solver_type (`str`, defaults to `midpoint`):
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
        lower_order_final (`bool`, defaults to `True`):
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
126
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
127
128
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
129
130
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
131
132
133
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
134
        final_sigmas_type (`str`, *optional*, defaults to `"zero"`):
135
136
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
137
138
139
        lambda_min_clipped (`float`, defaults to `-inf`):
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
            cosine (`squaredcos_cap_v2`) noise schedule.
140
        variance_type (`str`, *optional*):
141
142
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
            contains the predicted Gaussian variance.
143
144
    """

Kashif Rasul's avatar
Kashif Rasul committed
145
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "midpoint",
163
        lower_order_final: bool = False,
164
        use_karras_sigmas: Optional[bool] = False,
165
        use_exponential_sigmas: Optional[bool] = False,
166
        use_beta_sigmas: Optional[bool] = False,
167
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
168
169
        lambda_min_clipped: float = -float("inf"),
        variance_type: Optional[str] = None,
170
    ):
171
172
173
174
175
176
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
177
178
179
180
        if algorithm_type == "dpmsolver":
            deprecation_message = "algorithm_type `dpmsolver` is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
            deprecate("algorithm_types=dpmsolver", "1.0.0", deprecation_message)

181
182
183
184
185
186
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
187
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
188
189
190
191
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
192
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
193
194
195
196
197
198
199

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
200
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
201
202
203
204
205

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # settings for DPM-Solver
206
        if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]:
207
            if algorithm_type == "deis":
208
                self.register_to_config(algorithm_type="dpmsolver++")
209
            else:
210
                raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
211
        if solver_type not in ["midpoint", "heun"]:
212
            if solver_type in ["logrho", "bh1", "bh2"]:
213
                self.register_to_config(solver_type="midpoint")
214
            else:
215
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
216

217
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
218
219
220
221
            raise ValueError(
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please chooose `sigma_min` instead."
            )

222
223
224
225
226
227
228
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.sample = None
        self.order_list = self.get_order_list(num_train_timesteps)
229
        self._step_index = None
230
        self._begin_index = None
231
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
232
233
234
235
236
237
238

    def get_order_list(self, num_inference_steps: int) -> List[int]:
        """
        Computes the solver order at each time step.

        Args:
            num_inference_steps (`int`):
239
                The number of diffusion steps used when generating samples with a pre-trained model.
240
241
        """
        steps = num_inference_steps
242
        order = self.config.solver_order
243
244
        if order > 3:
            raise ValueError("Order > 3 is not supported by this scheduler")
245
        if self.config.lower_order_final:
246
247
248
249
250
251
252
253
254
            if order == 3:
                if steps % 3 == 0:
                    orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
                elif steps % 3 == 1:
                    orders = [1, 2, 3] * (steps // 3) + [1]
                else:
                    orders = [1, 2, 3] * (steps // 3) + [1, 2]
            elif order == 2:
                if steps % 2 == 0:
255
                    orders = [1, 2] * (steps // 2 - 1) + [1, 1]
256
257
258
259
260
261
262
263
264
265
266
267
268
                else:
                    orders = [1, 2] * (steps // 2) + [1]
            elif order == 1:
                orders = [1] * steps
        else:
            if order == 3:
                orders = [1, 2, 3] * (steps // 3)
            elif order == 2:
                orders = [1, 2] * (steps // 2)
            elif order == 1:
                orders = [1] * steps
        return orders

269
270
271
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
272
        The index counter for current timestep. It will increase 1 after each scheduler step.
273
274
275
        """
        return self._step_index

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

294
295
296
297
298
299
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
300
        """
301
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
302
303
304

        Args:
            num_inference_steps (`int`):
305
306
307
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
308
309
310
311
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps schedule is used. If `timesteps` is
                passed, `num_inference_steps` must be `None`.
312
        """
313
314
315
316
317
318
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Must pass exactly one of  `num_inference_steps` or `timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` when `config.use_karras_sigmas=True`.")
319
320
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
321
322
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
323
324

        num_inference_steps = num_inference_steps or len(timesteps)
325
        self.num_inference_steps = num_inference_steps
326
327
328
329
330
331
332
333
334
335
336
337
338

        if timesteps is not None:
            timesteps = np.array(timesteps).astype(np.int64)
        else:
            # Clipping the minimum of all lambda(t) for numerical stability.
            # This is critical for cosine (squaredcos_cap_v2) noise schedule.
            clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1 - clipped_idx, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
339

340
341
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
342
            log_sigmas = np.log(sigmas)
343
            sigmas = np.flip(sigmas).copy()
344
345
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
346
347
348
        elif self.config.use_exponential_sigmas:
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
349
350
351
        elif self.config.use_beta_sigmas:
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
352
353
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
354
355

        if self.config.final_sigmas_type == "sigma_min":
356
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
357
358
359
360
361
362
363
        elif self.config.final_sigmas_type == "zero":
            sigma_last = 0
        else:
            raise ValueError(
                f" `final_sigmas_type` must be one of `sigma_min` or `zero`, but got {self.config.final_sigmas_type}"
            )
        sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
364

365
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
366

367
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
368
369
        self.model_outputs = [None] * self.config.solver_order
        self.sample = None
Patrick von Platen's avatar
Patrick von Platen committed
370
371

        if not self.config.lower_order_final and num_inference_steps % self.config.solver_order != 0:
372
            logger.warning(
373
                "Changing scheduler {self.config} to have `lower_order_final` set to True to handle uneven amount of inference steps. Please make sure to always use an even number of `num_inference steps when using `lower_order_final=False`."
Patrick von Platen's avatar
Patrick von Platen committed
374
375
376
            )
            self.register_to_config(lower_order_final=True)

377
        if not self.config.lower_order_final and self.config.final_sigmas_type == "zero":
378
            logger.warning(
379
380
381
382
                " `last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True."
            )
            self.register_to_config(lower_order_final=True)

Patrick von Platen's avatar
Patrick von Platen committed
383
        self.order_list = self.get_order_list(num_inference_steps)
384

385
386
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
387
        self._begin_index = None
388
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
389

390
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
391
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
392
393
394
395
396
397
398
399
400
401
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
402
        batch_size, channels, *remaining_dims = sample.shape
403
404
405
406
407

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
408
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
409
410
411
412
413
414
415
416
417
418

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

419
        sample = sample.reshape(batch_size, channels, *remaining_dims)
420
421
422
        sample = sample.to(dtype)

        return sample
423

424
425
426
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
427
        log_sigma = np.log(np.maximum(sigma, 1e-10))
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

448
449
450
451
452
453
454
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

455
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
456
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
457
458
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
473
474
475
476
477
478
479
480

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
        return sigmas

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.Tensor(
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

535
    def convert_model_output(
536
        self,
537
        model_output: torch.Tensor,
538
        *args,
539
        sample: torch.Tensor = None,
540
        **kwargs,
541
    ) -> torch.Tensor:
542
        """
543
544
545
546
547
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
        integral of the data prediction model.

        <Tip>
548

549
550
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
        prediction and data prediction models.
551

552
        </Tip>
553
554

        Args:
555
            model_output (`torch.Tensor`):
556
                The direct output from the learned diffusion model.
557
            sample (`torch.Tensor`):
558
                A current instance of a sample created by the diffusion process.
559
560

        Returns:
561
            `torch.Tensor`:
562
                The converted model output.
563
        """
564
565
566
567
568
569
570
571
572
573
574
575
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
576
        # DPM-Solver++ needs to solve an integral of the data prediction model.
577
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
578
            if self.config.prediction_type == "epsilon":
579
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
580
                if self.config.variance_type in ["learned", "learned_range"]:
581
                    model_output = model_output[:, :3]
582
583
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
584
585
586
587
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
588
589
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
590
591
592
593
594
595
596
597
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

            if self.config.thresholding:
598
599
                x0_pred = self._threshold_sample(x0_pred)

600
            return x0_pred
601

602
603
604
        # DPM-Solver needs to solve an integral of the noise prediction model.
        elif self.config.algorithm_type == "dpmsolver":
            if self.config.prediction_type == "epsilon":
605
                # DPM-Solver and DPM-Solver++ only need the "mean" output.
606
607
608
609
                if self.config.variance_type in ["learned", "learned_range"]:
                    epsilon = model_output[:, :3]
                else:
                    epsilon = model_output
610
            elif self.config.prediction_type == "sample":
611
612
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
613
614
                epsilon = (sample - alpha_t * model_output) / sigma_t
            elif self.config.prediction_type == "v_prediction":
615
616
                sigma = self.sigmas[self.step_index]
                alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
617
618
619
620
621
622
623
                epsilon = alpha_t * model_output + sigma_t * sample
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
                    " `v_prediction` for the DPMSolverSinglestepScheduler."
                )

624
625
626
627
628
629
630
631
            if self.config.thresholding:
                alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
                x0_pred = (sample - sigma_t * epsilon) / alpha_t
                x0_pred = self._threshold_sample(x0_pred)
                epsilon = (sample - alpha_t * x0_pred) / sigma_t

            return epsilon

632
633
    def dpm_solver_first_order_update(
        self,
634
        model_output: torch.Tensor,
635
        *args,
636
        sample: torch.Tensor = None,
637
        noise: Optional[torch.Tensor] = None,
638
        **kwargs,
639
    ) -> torch.Tensor:
640
        """
641
        One step for the first-order DPMSolver (equivalent to DDIM).
642
643

        Args:
644
            model_output (`torch.Tensor`):
645
646
647
648
649
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
650
            sample (`torch.Tensor`):
651
                A current instance of a sample created by the diffusion process.
652
653

        Returns:
654
            `torch.Tensor`:
655
                The sample tensor at the previous timestep.
656
        """
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
682
683
684
685
686
        h = lambda_t - lambda_s
        if self.config.algorithm_type == "dpmsolver++":
            x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
        elif self.config.algorithm_type == "dpmsolver":
            x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
687
688
689
690
691
692
693
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            x_t = (
                (sigma_t / sigma_s * torch.exp(-h)) * sample
                + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
                + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
            )
694
695
696
697
        return x_t

    def singlestep_dpm_solver_second_order_update(
        self,
698
        model_output_list: List[torch.Tensor],
699
        *args,
700
        sample: torch.Tensor = None,
701
        noise: Optional[torch.Tensor] = None,
702
        **kwargs,
703
    ) -> torch.Tensor:
704
        """
705
706
        One step for the second-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-2]`.
707
708

        Args:
709
            model_output_list (`List[torch.Tensor]`):
710
711
712
713
714
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
715
            sample (`torch.Tensor`):
716
                A current instance of a sample created by the diffusion process.
717
718

        Returns:
719
            `torch.Tensor`:
720
                The sample tensor at the previous timestep.
721
        """
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
        sigma_t, sigma_s0, sigma_s1 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
        )

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

756
        m0, m1 = model_output_list[-1], model_output_list[-2]
757

758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
        h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m1, (1.0 / r0) * (m0 - m1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s1) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                )
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        elif self.config.algorithm_type == "sde-dpmsolver++":
            assert noise is not None
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s1 * torch.exp(-h)) * sample
                    + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
                    + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
                    + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
                )
805
806
807
808
        return x_t

    def singlestep_dpm_solver_third_order_update(
        self,
809
        model_output_list: List[torch.Tensor],
810
        *args,
811
        sample: torch.Tensor = None,
812
        **kwargs,
813
    ) -> torch.Tensor:
814
        """
815
816
        One step for the third-order singlestep DPMSolver that computes the solution at time `prev_timestep` from the
        time `timestep_list[-3]`.
817
818

        Args:
819
            model_output_list (`List[torch.Tensor]`):
820
821
822
823
824
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
825
            sample (`torch.Tensor`):
826
                A current instance of a sample created by diffusion process.
827
828

        Returns:
829
            `torch.Tensor`:
830
                The sample tensor at the previous timestep.
831
        """
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858

        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
            self.sigmas[self.step_index + 1],
            self.sigmas[self.step_index],
            self.sigmas[self.step_index - 1],
            self.sigmas[self.step_index - 2],
859
        )
860
861
862
863
864
865
866
867
868
869
870
871
872

        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)

        m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
        r0, r1 = h_0 / h, h_1 / h
        D0 = m2
        D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
        D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
        D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
        if self.config.algorithm_type == "dpmsolver++":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (sigma_t / sigma_s2) * sample
                    - (alpha_t * (torch.exp(-h) - 1.0)) * D0
                    + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
                    - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
                )
        elif self.config.algorithm_type == "dpmsolver":
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
            if self.config.solver_type == "midpoint":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1_1
                )
            elif self.config.solver_type == "heun":
                x_t = (
                    (alpha_t / alpha_s2) * sample
                    - (sigma_t * (torch.exp(h) - 1.0)) * D0
                    - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
                    - (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
                )
        return x_t

    def singlestep_dpm_solver_update(
        self,
913
        model_output_list: List[torch.Tensor],
914
        *args,
915
        sample: torch.Tensor = None,
916
        order: int = None,
917
        noise: Optional[torch.Tensor] = None,
918
        **kwargs,
919
    ) -> torch.Tensor:
920
        """
921
        One step for the singlestep DPMSolver.
922
923

        Args:
924
            model_output_list (`List[torch.Tensor]`):
925
926
927
928
929
                The direct outputs from learned diffusion model at current and latter timesteps.
            timestep (`int`):
                The current and latter discrete timestep in the diffusion chain.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
930
            sample (`torch.Tensor`):
931
                A current instance of a sample created by diffusion process.
932
            order (`int`):
933
                The solver order at this step.
934
935

        Returns:
936
            `torch.Tensor`:
937
                The sample tensor at the previous timestep.
938
        """
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
        timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 2:
                sample = args[2]
            else:
                raise ValueError(" missing`sample` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if timestep_list is not None:
            deprecate(
                "timestep_list",
                "1.0.0",
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

965
        if order == 1:
966
            return self.dpm_solver_first_order_update(model_output_list[-1], sample=sample, noise=noise)
967
        elif order == 2:
968
            return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
969
        elif order == 3:
970
            return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample)
971
972
973
        else:
            raise ValueError(f"Order must be 1, 2, 3, got {order}")

974
975
976
977
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
978

979
        index_candidates = (schedule_timesteps == timestep).nonzero()
980
981
982
983
984
985
986
987
988
989
990
991

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
1006

1007
1008
    def step(
        self,
1009
        model_output: torch.Tensor,
1010
        timestep: Union[int, torch.Tensor],
1011
        sample: torch.Tensor,
1012
        generator=None,
1013
1014
1015
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
1016
1017
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the singlestep DPMSolver.
1018
1019

        Args:
1020
            model_output (`torch.Tensor`):
1021
1022
1023
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
1024
            sample (`torch.Tensor`):
1025
1026
1027
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
1028
1029

        Returns:
1030
1031
1032
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
1033
1034
1035
1036
1037
1038
1039

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

1040
1041
        if self.step_index is None:
            self._init_step_index(timestep)
1042

1043
        model_output = self.convert_model_output(model_output, sample=sample)
1044
1045
1046
1047
        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
        self.model_outputs[-1] = model_output

1048
1049
1050
1051
1052
1053
1054
        if self.config.algorithm_type == "sde-dpmsolver++":
            noise = randn_tensor(
                model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
            )
        else:
            noise = None

1055
        order = self.order_list[self.step_index]
Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
1058
1059
1060
1061

        #  For img2img denoising might start with order>1 which is not possible
        #  In this case make sure that the first two steps are both order=1
        while self.model_outputs[-order] is None:
            order -= 1

1062
1063
1064
1065
        # For single-step solvers, we use the initial value at each time with order = 1.
        if order == 1:
            self.sample = sample

1066
1067
1068
        prev_sample = self.singlestep_dpm_solver_update(
            self.model_outputs, sample=self.sample, order=order, noise=noise
        )
1069

1070
        # upon completion increase step index by one, noise=noise
1071
        self._step_index += 1
1072
1073
1074
1075
1076
1077

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1078
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1079
1080
1081
1082
1083
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1084
            sample (`torch.Tensor`):
1085
                The input sample.
1086
1087

        Returns:
1088
            `torch.Tensor`:
1089
                A scaled input sample.
1090
1091
1092
        """
        return sample

1093
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1094
1095
    def add_noise(
        self,
1096
1097
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1098
        timesteps: torch.IntTensor,
1099
    ) -> torch.Tensor:
1100
1101
1102
1103
1104
1105
1106
1107
1108
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1109

1110
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1111
1112
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1113
1114
1115
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1116
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1117
            # add noise is called before first denoising step to create initial latent(img2img)
1118
            step_indices = [self.begin_index] * timesteps.shape[0]
1119

1120
1121
1122
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1123

1124
1125
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1126
1127
1128
1129
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps