train_dreambooth.py 52.9 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import gc
18
import hashlib
19
import itertools
Suraj Patil's avatar
Suraj Patil committed
20
import logging
21
22
import math
import os
23
import warnings
24
25
from pathlib import Path

26
import numpy as np
27
28
29
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
30
import transformers
31
32
from accelerate import Accelerator
from accelerate.logging import get_logger
33
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
39
40
41
42
43
from huggingface_hub import create_repo, model_info, upload_folder
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
44
45
46
47
48
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
49
    StableDiffusionPipeline,
50
51
    UNet2DConditionModel,
)
52
from diffusers.optimization import get_scheduler
53
from diffusers.utils import check_min_version, is_wandb_available
54
55
from diffusers.utils.import_utils import is_xformers_available

56

57
58
59
if is_wandb_available():
    import wandb

60
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
61
check_min_version("0.18.0.dev0")
62

63
64
65
logger = get_logger(__name__)


66
67
68
69
70
71
72
73
74
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
75
76
77
78
79
80
81
82
83
84
85
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
86
87
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
- text-to-image
- diffusers
- dreambooth
inference: true
---
    """
    model_card = f"""
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


107
108
109
def log_validation(
    text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch, prompt_embeds, negative_prompt_embeds
):
110
111
112
113
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
114
115
116
117
118
119

    pipeline_args = {}

    if vae is not None:
        pipeline_args["vae"] = vae

120
121
122
    if text_encoder is not None:
        text_encoder = accelerator.unwrap_model(text_encoder)

123
124
125
126
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
127
        text_encoder=text_encoder,
128
129
130
        unet=accelerator.unwrap_model(unet),
        revision=args.revision,
        torch_dtype=weight_dtype,
131
        **pipeline_args,
132
    )
133
134
135
136
137
138
139
140
141
142
143
144
145

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipeline.scheduler.config:
        variance_type = pipeline.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
146
147
148
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

149
150
151
152
153
154
155
156
    if args.pre_compute_text_embeddings:
        pipeline_args = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
        }
    else:
        pipeline_args = {"prompt": args.validation_prompt}

157
158
159
    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
160
161
162
163
164
165
166
167
168
169
    if args.validation_images is None:
        for _ in range(args.num_validation_images):
            with torch.autocast("cuda"):
                image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
            images.append(image)
    else:
        for image in args.validation_images:
            image = Image.open(image)
            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
            images.append(image)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

187
188
    return images

189

190
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
191
192
193
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
194
        revision=revision,
195
196
197
198
199
200
201
202
203
204
205
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
206
207
208
209
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
210
211
212
213
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
214
def parse_args(input_args=None):
215
216
217
218
219
220
221
222
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
223
224
225
226
227
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
228
229
230
231
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
232
    )
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
257
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
258
        help="The prompt with identifier specifying the instance",
259
260
261
262
263
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
264
        help="The prompt to specify images in the same class as provided instance images.",
265
266
267
268
269
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
270
        help="Flag to add prior preservation loss.",
271
272
273
274
275
276
277
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
278
279
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
299
300
301
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
302
303
304
305
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
306
    )
307
308
309
310
311
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
312
313
314
315
316
317
318
319
320
321
322
323
324
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
325
326
327
328
329
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
330
331
332
333
334
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
335
336
        ),
    )
337
    parser.add_argument(
338
        "--checkpoints_total_limit",
339
340
341
342
343
344
345
346
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
347
348
349
350
351
352
353
354
355
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
391
392
393
394
395
396
397
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
398
399
400
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
401
402
403
404
405
406
407
408
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
431
432
433
434
435
436
437
438
439
440
441
442
443
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
444
445
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
446
447
        ),
    )
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
470
471
472
    parser.add_argument(
        "--mixed_precision",
        type=str,
473
        default=None,
474
475
        choices=["no", "fp16", "bf16"],
        help=(
476
477
478
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
479
480
        ),
    )
481
482
483
484
485
486
487
488
489
490
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
491
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
492
493
494
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
495
496
497
498
499
500
501
502
503
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
504

505
506
507
508
509
510
511
512
513
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
    parser.add_argument(
        "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
    )
535
536
537
538
539
540
541
542
543
544
545
546
547
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
548

549
550
551
552
553
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

554
555
556
557
558
559
560
561
562
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
563
    else:
564
        # logger is not available yet
565
        if args.class_data_dir is not None:
566
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
567
        if args.class_prompt is not None:
568
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
569

570
571
572
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

573
574
575
576
577
    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
578
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
579
580
581
582
583
584
585
586
587
588
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
589
        class_num=None,
590
591
        size=512,
        center_crop=False,
592
593
594
        encoder_hidden_states=None,
        instance_prompt_encoder_hidden_states=None,
        tokenizer_max_length=None,
595
596
597
598
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
599
600
601
        self.encoder_hidden_states = encoder_hidden_states
        self.instance_prompt_encoder_hidden_states = instance_prompt_encoder_hidden_states
        self.tokenizer_max_length = tokenizer_max_length
602
603
604

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
605
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
606
607
608
609
610
611
612
613
614

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
615
            self.class_images_path = list(self.class_data_root.iterdir())
616
617
618
619
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
640
641
        instance_image = exif_transpose(instance_image)

642
643
644
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
645
646
647
648
649
650
651
652
653

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
654
655
656

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
657
658
            class_image = exif_transpose(class_image)

659
660
661
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
662
663
664
665
666
667
668
669
670

            if self.instance_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.instance_prompt_encoder_hidden_states
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
671
672
673
674

        return example


675
def collate_fn(examples, with_prior_preservation=False):
676
677
    has_attention_mask = "instance_attention_mask" in examples[0]

678
679
680
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

681
682
683
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

684
685
686
687
688
689
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

690
691
692
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]

693
694
695
696
697
698
699
700
701
    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
702
703

    if has_attention_mask:
704
        attention_mask = torch.cat(attention_mask, dim=0)
705
706
        batch["attention_mask"] = attention_mask

707
708
709
    return batch


710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
def model_has_vae(args):
    config_file_name = os.path.join("vae", AutoencoderKL.config_name)
    if os.path.isdir(args.pretrained_model_name_or_path):
        config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
        return os.path.isfile(config_file_name)
    else:
        files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
        return any(file.rfilename == config_file_name for file in files_in_repo)


def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


771
def main(args):
772
773
    logging_dir = Path(args.output_dir, args.logging_dir)

774
775
776
    accelerator_project_config = ProjectConfiguration(
        total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir
    )
777

778
779
780
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
781
        log_with=args.report_to,
782
        project_config=accelerator_project_config,
783
784
    )

785
786
787
788
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

789
790
791
792
793
794
795
796
797
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
813
814
815
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
816
    # Generate class images if prior preservation is enabled.
817
818
819
820
821
822
823
824
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
825
826
827
828
829
830
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
831
            pipeline = DiffusionPipeline.from_pretrained(
832
833
834
835
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
851
                images = pipeline(example["prompt"]).images
852
853

                for i, image in enumerate(images):
854
855
856
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
857
858
859
860
861
862
863

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
864
        if args.output_dir is not None:
865
866
            os.makedirs(args.output_dir, exist_ok=True)

867
868
869
870
871
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

872
873
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
874
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
875
    elif args.pretrained_model_name_or_path:
876
        tokenizer = AutoTokenizer.from_pretrained(
877
878
879
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
880
            use_fast=False,
881
        )
882

883
    # import correct text encoder class
884
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
885

Suraj Patil's avatar
Suraj Patil committed
886
887
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
888
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
889
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
890
    )
891
892
893
894
895
896
897
898

    if model_has_vae(args):
        vae = AutoencoderKL.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
        )
    else:
        vae = None

899
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
900
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
901
    )
902

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        for model in models:
            sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder"
            model.save_pretrained(os.path.join(output_dir, sub_dir))

            # make sure to pop weight so that corresponding model is not saved again
            weights.pop()

    def load_model_hook(models, input_dir):
        while len(models) > 0:
            # pop models so that they are not loaded again
            model = models.pop()

            if isinstance(model, type(accelerator.unwrap_model(text_encoder))):
                # load transformers style into model
                load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                model.config = load_model.config
            else:
                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)
931

932
933
934
    if vae is not None:
        vae.requires_grad_(False)

Suraj Patil's avatar
Suraj Patil committed
935
936
937
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

938
939
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
940
941
942
943
944
945
946
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
947
            unet.enable_xformers_memory_efficient_attention()
948
949
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
950

951
952
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
953
954
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
955

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

    if accelerator.unwrap_model(unet).dtype != torch.float32:
        raise ValueError(
            f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
        )

    if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
        raise ValueError(
            f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
            f" {low_precision_error_string}"
        )

Suraj Patil's avatar
Suraj Patil committed
973
974
975
976
977
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
996
    # Optimizer creation
997
998
999
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
1000
    optimizer = optimizer_class(
1001
        params_to_optimize,
1002
1003
1004
1005
1006
1007
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

        if args.instance_prompt is not None:
            pre_computed_instance_prompt_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        else:
            pre_computed_instance_prompt_encoder_hidden_states = None

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
        pre_computed_instance_prompt_encoder_hidden_states = None

Suraj Patil's avatar
Suraj Patil committed
1046
    # Dataset and DataLoaders creation:
1047
1048
1049
1050
1051
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1052
        class_num=args.num_class_images,
1053
1054
1055
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
1056
1057
1058
        encoder_hidden_states=pre_computed_encoder_hidden_states,
        instance_prompt_encoder_hidden_states=pre_computed_instance_prompt_encoder_hidden_states,
        tokenizer_max_length=args.tokenizer_max_length,
1059
1060
1061
    )

    train_dataloader = torch.utils.data.DataLoader(
1062
1063
1064
1065
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1066
        num_workers=args.dataloader_num_workers,
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
1081
1082
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
1083
1084
    )

Suraj Patil's avatar
Suraj Patil committed
1085
    # Prepare everything with our `accelerator`.
1086
1087
1088
1089
1090
1091
1092
1093
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1094

Suraj Patil's avatar
Suraj Patil committed
1095
1096
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
1097
    weight_dtype = torch.float32
1098
    if accelerator.mixed_precision == "fp16":
1099
        weight_dtype = torch.float16
1100
    elif accelerator.mixed_precision == "bf16":
1101
1102
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
1103
    # Move vae and text_encoder to device and cast to weight_dtype
1104
1105
1106
1107
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)

    if not args.train_text_encoder and text_encoder is not None:
1108
        text_encoder.to(accelerator.device, dtype=weight_dtype)
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
1133
1134
1135
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
1136
    # Potentially load in the weights and states from a previous save
1137
1138
1139
1140
1141
1142
1143
1144
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
1160

1161
    # Only show the progress bar once on each machine.
1162
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
1163
1164
    progress_bar.set_description("Steps")

1165
    for epoch in range(first_epoch, args.num_train_epochs):
1166
        unet.train()
1167
1168
        if args.train_text_encoder:
            text_encoder.train()
1169
        for step, batch in enumerate(train_dataloader):
1170
1171
1172
1173
1174
1175
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

1176
            with accelerator.accumulate(unet):
1177
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
1178

1179
1180
1181
1182
1183
1184
1185
1186
                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values

                # Sample noise that we'll add to the model input
1187
                if args.offset_noise:
1188
1189
                    noise = torch.randn_like(model_input) + 0.1 * torch.randn(
                        model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
1190
1191
                    )
                else:
1192
                    noise = torch.randn_like(model_input)
1193
                bsz, channels, height, width = model_input.shape
1194
                # Sample a random timestep for each image
1195
1196
1197
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1198
1199
                timesteps = timesteps.long()

1200
                # Add noise to the model input according to the noise magnitude at each timestep
1201
                # (this is the forward diffusion process)
1202
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1203
1204

                # Get the text embedding for conditioning
1205
1206
1207
1208
1209
1210
1211
1212
1213
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1214

1215
                if accelerator.unwrap_model(unet).config.in_channels == channels * 2:
1216
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1217
1218
1219
1220
1221
1222

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1223
                # Predict the noise residual
1224
1225
1226
                model_pred = unet(
                    noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels
                ).sample
1227
1228
1229

                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1230
1231
1232
1233
1234

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
1235
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1236
1237
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1238
1239

                if args.with_prior_preservation:
1240
1241
1242
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1243
1244

                    # Compute instance loss
1245
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1246
1247

                    # Compute prior loss
1248
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1249
1250
1251
1252

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
1253
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1254
1255

                accelerator.backward(loss)
1256
                if accelerator.sync_gradients:
1257
1258
1259
1260
1261
1262
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1263
1264
                optimizer.step()
                lr_scheduler.step()
1265
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1266
1267
1268
1269
1270
1271

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1272
                if accelerator.is_main_process:
1273
                    images = []
1274
                    if global_step % args.checkpointing_steps == 0:
1275
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1276
1277
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1278
1279

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1280
                        images = log_validation(
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
                            text_encoder,
                            tokenizer,
                            unet,
                            vae,
                            args,
                            accelerator,
                            weight_dtype,
                            epoch,
                            validation_prompt_encoder_hidden_states,
                            validation_prompt_negative_prompt_embeds,
1291
                        )
1292

1293
1294
1295
1296
1297
1298
1299
1300
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1301
    accelerator.wait_for_everyone()
1302
    if accelerator.is_main_process:
1303
1304
1305
1306
1307
1308
1309
1310
        pipeline_args = {}

        if text_encoder is not None:
            pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder)

        if args.skip_save_text_encoder:
            pipeline_args["text_encoder"] = None

1311
        pipeline = DiffusionPipeline.from_pretrained(
1312
1313
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
1314
            revision=args.revision,
1315
            **pipeline_args,
1316
        )
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)

1331
1332
1333
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1334
1335
1336
1337
1338
1339
1340
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1341
                pipeline=pipeline,
1342
            )
1343
1344
1345
1346
1347
1348
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1349
1350
1351
1352
1353

    accelerator.end_training()


if __name__ == "__main__":
1354
1355
    args = parse_args()
    main(args)