test_controlnet.py 40.3 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
import tempfile
18
import traceback
19
20
21
22
23
24
25
26
27
28
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
29
    EulerDiscreteScheduler,
30
    LCMScheduler,
31
32
33
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
)
34
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
35
from diffusers.utils.import_utils import is_xformers_available
36
from diffusers.utils.testing_utils import (
37
38
39
40
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_max_memory_allocated,
    backend_reset_peak_memory_stats,
41
    enable_full_determinism,
42
    get_python_version,
43
    is_torch_compile,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
    load_image,
    load_numpy,
46
    require_torch_2,
47
    require_torch_accelerator,
48
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
49
50
    slow,
    torch_device,
51
)
Dhruv Nair's avatar
Dhruv Nair committed
52
from diffusers.utils.torch_utils import randn_tensor
53

54
from ..pipeline_params import (
55
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
56
    TEXT_TO_IMAGE_BATCH_PARAMS,
57
    TEXT_TO_IMAGE_IMAGE_PARAMS,
58
59
    TEXT_TO_IMAGE_PARAMS,
)
60
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
61
    IPAdapterTesterMixin,
62
63
64
65
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
66
67


68
enable_full_determinism()
69
70


71
72
73
74
75
76
77
78
79
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
80
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        )
        pipe.to("cuda")
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        pipe.controlnet.to(memory_format=torch.channels_last)
        pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
Dhruv Nair's avatar
Dhruv Nair committed
95
        ).resize((512, 512))
96

Dhruv Nair's avatar
Dhruv Nair committed
97
        output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np")
98
99
        image = output.images[0]

Dhruv Nair's avatar
Dhruv Nair committed
100
        assert image.shape == (512, 512, 3)
101
102
103
104

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
        )
Dhruv Nair's avatar
Dhruv Nair committed
105
        expected_image = np.resize(expected_image, (512, 512, 3))
106
107
108
109
110
111
112
113
114
115
116

        assert np.abs(expected_image - image).max() < 1.0

    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


117
class ControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
118
119
120
121
122
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
123
):
124
125
126
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
127
128
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
Aryan's avatar
Aryan committed
129
    test_layerwise_casting = True
130

131
    def get_dummy_components(self, time_cond_proj_dim=None):
132
133
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
134
            block_out_channels=(4, 8),
135
136
137
138
139
140
141
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
142
            norm_num_groups=1,
143
            time_cond_proj_dim=time_cond_proj_dim,
144
145
146
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
147
            block_out_channels=(4, 8),
148
149
150
151
152
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
153
            norm_num_groups=1,
154
155
156
157
158
159
160
161
162
163
164
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
165
            block_out_channels=[4, 8],
166
167
168
169
170
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
171
            norm_num_groups=2,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
197
            "image_encoder": None,
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
219
            "output_type": "np",
220
221
222
223
224
225
226
227
            "image": image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

228
    def test_ip_adapter(self):
229
230
231
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5234, 0.3333, 0.1745, 0.7605, 0.6224, 0.4637, 0.6989, 0.7526, 0.4665])
232
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
233

234
235
236
237
238
239
240
241
242
243
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def test_controlnet_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    def test_controlnet_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

290

291
class StableDiffusionMultiControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
292
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
293
):
294
295
296
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
297
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
298

Marc Sun's avatar
Marc Sun committed
299
300
    supports_dduf = False

301
302
303
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
304
            block_out_channels=(4, 8),
305
306
307
308
309
310
311
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
312
            norm_num_groups=1,
313
314
        )
        torch.manual_seed(0)
315
316
317

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
318
                torch.nn.init.normal_(m.weight)
319
320
                m.bias.data.fill_(1.0)

321
        controlnet1 = ControlNetModel(
322
            block_out_channels=(4, 8),
323
324
325
326
327
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
328
            norm_num_groups=1,
329
        )
330
331
        controlnet1.controlnet_down_blocks.apply(init_weights)

332
333
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
334
            block_out_channels=(4, 8),
335
336
337
338
339
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
340
            norm_num_groups=1,
341
        )
342
343
        controlnet2.controlnet_down_blocks.apply(init_weights)

344
345
346
347
348
349
350
351
352
353
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
354
            block_out_channels=[4, 8],
355
356
357
358
359
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
360
            norm_num_groups=2,
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
388
            "image_encoder": None,
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
418
            "output_type": "np",
419
420
421
422
423
            "image": images,
        }

        return inputs

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

457
458
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
459
460
461
462
463
464
465
466
467
468
469

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

470
    def test_ip_adapter(self):
471
472
473
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.2422, 0.3425, 0.4048, 0.5351, 0.3503, 0.2419, 0.4645, 0.4570, 0.3804])
474
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
475

476
477
478
479
480
481
482
483
484
485
486
487
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def test_inference_multiple_prompt_input(self):
        device = "cpu"

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"]]
        output = sd_pipe(**inputs)
        image = output.images

        assert image.shape == (2, 64, 64, 3)

        image_1, image_2 = image
        # make sure that the outputs are different
        assert np.sum(np.abs(image_1 - image_2)) > 1e-3

        # multiple prompts, single image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        output_1 = sd_pipe(**inputs)

        assert np.abs(image - output_1.images).max() < 1e-3

515
516
517
518
519
520
521
522
523
        # multiple prompts, multiple image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"], inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"], inputs["image"], inputs["image"]]
        output_2 = sd_pipe(**inputs)
        image = output_2.images

        assert image.shape == (4, 64, 64, 3)

524
525

class StableDiffusionMultiControlNetOneModelPipelineFastTests(
Aryan's avatar
Aryan committed
526
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
527
528
529
530
531
532
):
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

Marc Sun's avatar
Marc Sun committed
533
534
    supports_dduf = False

535
536
537
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
538
            block_out_channels=(4, 8),
539
540
541
542
543
544
545
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
546
            norm_num_groups=1,
547
548
549
550
551
        )
        torch.manual_seed(0)

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
552
                torch.nn.init.normal_(m.weight)
553
554
555
                m.bias.data.fill_(1.0)

        controlnet = ControlNetModel(
556
            block_out_channels=(4, 8),
557
558
559
560
561
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
562
            norm_num_groups=1,
563
564
565
566
567
568
569
570
571
572
573
574
575
        )
        controlnet.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
576
            block_out_channels=[4, 8],
577
578
579
580
581
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
582
            norm_num_groups=2,
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
610
            "image_encoder": None,
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
635
            "output_type": "np",
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
            "image": images,
        }

        return inputs

    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(
            **inputs,
            control_guidance_start=[0.1],
            control_guidance_end=[0.2],
        )[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
680
681
682
683
684
685
686
687
688
689
690

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

691
    def test_ip_adapter(self):
692
693
694
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5264, 0.3203, 0.1602, 0.8235, 0.6332, 0.4593, 0.7226, 0.7777, 0.4780])
695
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
696

697
698
699
700
701
702
703
704
705
706
707
708
709
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass


710
@slow
711
@require_torch_accelerator
712
class ControlNetPipelineSlowTests(unittest.TestCase):
713
714
715
    def setUp(self):
        super().setUp()
        gc.collect()
716
        backend_empty_cache(torch_device)
717

718
719
720
    def tearDown(self):
        super().tearDown()
        gc.collect()
721
        backend_empty_cache(torch_device)
722
723
724
725
726

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
727
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
728
        )
729
        pipe.enable_model_cpu_offload(device=torch_device)
730
731
732
733
734
735
736
737
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

738
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
739
740
741
742
743
744
745
746
747

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy"
        )

748
        assert np.abs(expected_image - image).max() < 9e-2
749
750
751
752
753

    def test_depth(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
754
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
755
        )
756
        pipe.enable_model_cpu_offload(device=torch_device)
757
758
759
760
761
762
763
764
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Stormtrooper's lecture"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
        )

765
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
766
767
768
769
770
771
772
773
774

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy"
        )

775
        assert np.abs(expected_image - image).max() < 8e-1
776
777
778
779
780

    def test_hed(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
781
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
782
        )
783
        pipe.enable_model_cpu_offload(device=torch_device)
784
785
786
787
788
789
790
791
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "oil painting of handsome old man, masterpiece"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png"
        )

792
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
793
794
795
796
797
798
799
800
801

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy"
        )

802
        assert np.abs(expected_image - image).max() < 8e-2
803
804
805
806
807

    def test_mlsd(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
808
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
809
        )
810
        pipe.enable_model_cpu_offload(device=torch_device)
811
812
813
814
815
816
817
818
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "room"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png"
        )

819
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
820
821
822
823
824
825
826
827
828

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy"
        )

829
        assert np.abs(expected_image - image).max() < 5e-2
830
831
832
833
834

    def test_normal(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
835
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
836
        )
837
        pipe.enable_model_cpu_offload(device=torch_device)
838
839
840
841
842
843
844
845
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "cute toy"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png"
        )

846
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
847
848
849
850
851
852
853
854
855

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy"
        )

856
        assert np.abs(expected_image - image).max() < 5e-2
857
858
859
860
861

    def test_openpose(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
862
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
863
        )
864
        pipe.enable_model_cpu_offload(device=torch_device)
865
866
867
868
869
870
871
872
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Chef in the kitchen"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

873
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
874
875
876
877
878
879
880
881
882

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy"
        )

883
        assert np.abs(expected_image - image).max() < 8e-2
884
885
886
887
888

    def test_scribble(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
889
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
890
        )
891
        pipe.enable_model_cpu_offload(device=torch_device)
892
893
894
895
896
897
898
899
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "bag"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png"
        )

900
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
901
902
903
904
905
906
907
908
909

        image = output.images[0]

        assert image.shape == (640, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy"
        )

910
        assert np.abs(expected_image - image).max() < 8e-2
911
912
913
914
915

    def test_seg(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
916
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
917
        )
918
        pipe.enable_model_cpu_offload(device=torch_device)
919
920
921
922
923
924
925
926
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

927
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
928
929
930
931
932
933
934
935
936

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy"
        )

937
        assert np.abs(expected_image - image).max() < 8e-2
938
939

    def test_sequential_cpu_offloading(self):
940
941
942
        backend_empty_cache(torch_device)
        backend_reset_max_memory_allocated(torch_device)
        backend_reset_peak_memory_stats(torch_device)
943
944
945
946

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
947
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
948
949
950
        )
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
951
        pipe.enable_sequential_cpu_offload(device=torch_device)
952
953
954
955
956
957
958
959
960
961
962
963
964

        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

        _ = pipe(
            prompt,
            image,
            num_inference_steps=2,
            output_type="np",
        )

965
        mem_bytes = backend_max_memory_allocated(torch_device)
966
967
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 4 * 10**9
968

969
970
971
972
    def test_canny_guess_mode(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
973
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
974
        )
975
        pipe.enable_model_cpu_offload(device=torch_device)
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1001
1002
1003
1004
    def test_canny_guess_mode_euler(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1005
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
1006
1007
        )
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
1008
        pipe.enable_model_cpu_offload(device=torch_device)
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1034
    @is_torch_compile
1035
    @require_torch_2
1036
1037
1038
1039
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
1040
    def test_stable_diffusion_compile(self):
1041
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)
1042

1043
1044
1045
1046
    def test_v11_shuffle_global_pool_conditions(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1047
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
1048
        )
1049
        pipe.enable_model_cpu_offload(device=torch_device)
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "New York"
        image = load_image(
            "https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=7.0,
        )

        image = output.images[0]
        assert image.shape == (512, 640, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1074
1075

@slow
1076
@require_torch_accelerator
1077
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
1078
1079
1080
    def setUp(self):
        super().setUp()
        gc.collect()
1081
        backend_empty_cache(torch_device)
1082

1083
1084
1085
    def tearDown(self):
        super().tearDown()
        gc.collect()
1086
        backend_empty_cache(torch_device)
1087
1088
1089
1090
1091
1092

    def test_pose_and_canny(self):
        controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
        controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1093
1094
1095
            "stable-diffusion-v1-5/stable-diffusion-v1-5",
            safety_checker=None,
            controlnet=[controlnet_pose, controlnet_canny],
1096
        )
1097
        pipe.enable_model_cpu_offload(device=torch_device)
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird and Chef"
        image_canny = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )
        image_pose = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

1109
        output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3)
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy"
        )

        assert np.abs(expected_image - image).max() < 5e-2