test_controlnet.py 42.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
import tempfile
18
import traceback
19
20
21
22
23
24
25
26
27
28
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
29
    EulerDiscreteScheduler,
30
    LCMScheduler,
31
32
33
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
)
34
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
35
from diffusers.utils.import_utils import is_xformers_available
36
37
from diffusers.utils.testing_utils import (
    enable_full_determinism,
38
    get_python_version,
Dhruv Nair's avatar
Dhruv Nair committed
39
40
    load_image,
    load_numpy,
41
    numpy_cosine_similarity_distance,
Dhruv Nair's avatar
Dhruv Nair committed
42
    require_python39_or_higher,
43
44
45
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
46
47
    slow,
    torch_device,
48
)
Dhruv Nair's avatar
Dhruv Nair committed
49
from diffusers.utils.torch_utils import randn_tensor
50

51
from ..pipeline_params import (
52
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
53
    TEXT_TO_IMAGE_BATCH_PARAMS,
54
    TEXT_TO_IMAGE_IMAGE_PARAMS,
55
56
    TEXT_TO_IMAGE_PARAMS,
)
57
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
58
    IPAdapterTesterMixin,
59
60
61
62
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
63
64


65
enable_full_determinism()
66
67


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.to("cuda")
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        pipe.controlnet.to(memory_format=torch.channels_last)
        pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
Dhruv Nair's avatar
Dhruv Nair committed
92
        ).resize((512, 512))
93

Dhruv Nair's avatar
Dhruv Nair committed
94
        output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np")
95
96
        image = output.images[0]

Dhruv Nair's avatar
Dhruv Nair committed
97
        assert image.shape == (512, 512, 3)
98
99
100
101

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
        )
Dhruv Nair's avatar
Dhruv Nair committed
102
        expected_image = np.resize(expected_image, (512, 512, 3))
103
104
105
106
107
108
109
110
111
112
113

        assert np.abs(expected_image - image).max() < 1.0

    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


114
class ControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
115
116
117
118
119
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
120
):
121
122
123
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
124
125
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
126

127
    def get_dummy_components(self, time_cond_proj_dim=None):
128
129
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
130
            block_out_channels=(4, 8),
131
132
133
134
135
136
137
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
138
            norm_num_groups=1,
139
            time_cond_proj_dim=time_cond_proj_dim,
140
141
142
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
143
            block_out_channels=(4, 8),
144
145
146
147
148
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
149
            norm_num_groups=1,
150
151
152
153
154
155
156
157
158
159
160
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
161
            block_out_channels=[4, 8],
162
163
164
165
166
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
167
            norm_num_groups=2,
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
193
            "image_encoder": None,
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
215
            "output_type": "np",
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
            "image": image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def test_controlnet_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def test_controlnet_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

280

281
class StableDiffusionMultiControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
282
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
283
):
284
285
286
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
287
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
288
289
290
291

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
292
            block_out_channels=(4, 8),
293
294
295
296
297
298
299
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
300
            norm_num_groups=1,
301
302
        )
        torch.manual_seed(0)
303
304
305

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
306
                torch.nn.init.normal_(m.weight)
307
308
                m.bias.data.fill_(1.0)

309
        controlnet1 = ControlNetModel(
310
            block_out_channels=(4, 8),
311
312
313
314
315
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
316
            norm_num_groups=1,
317
        )
318
319
        controlnet1.controlnet_down_blocks.apply(init_weights)

320
321
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
322
            block_out_channels=(4, 8),
323
324
325
326
327
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
328
            norm_num_groups=1,
329
        )
330
331
        controlnet2.controlnet_down_blocks.apply(init_weights)

332
333
334
335
336
337
338
339
340
341
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
342
            block_out_channels=[4, 8],
343
344
345
346
347
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
348
            norm_num_groups=2,
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
376
            "image_encoder": None,
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
406
            "output_type": "np",
407
408
409
410
411
            "image": images,
        }

        return inputs

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

445
446
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    def test_inference_multiple_prompt_input(self):
        device = "cpu"

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"]]
        output = sd_pipe(**inputs)
        image = output.images

        assert image.shape == (2, 64, 64, 3)

        image_1, image_2 = image
        # make sure that the outputs are different
        assert np.sum(np.abs(image_1 - image_2)) > 1e-3

        # multiple prompts, single image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        output_1 = sd_pipe(**inputs)

        assert np.abs(image - output_1.images).max() < 1e-3

497
498
499
500
501
502
503
504
505
        # multiple prompts, multiple image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"], inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"], inputs["image"], inputs["image"]]
        output_2 = sd_pipe(**inputs)
        image = output_2.images

        assert image.shape == (4, 64, 64, 3)

506
507

class StableDiffusionMultiControlNetOneModelPipelineFastTests(
Aryan's avatar
Aryan committed
508
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
509
510
511
512
513
514
515
516
517
):
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
518
            block_out_channels=(4, 8),
519
520
521
522
523
524
525
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
526
            norm_num_groups=1,
527
528
529
530
531
        )
        torch.manual_seed(0)

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
532
                torch.nn.init.normal_(m.weight)
533
534
535
                m.bias.data.fill_(1.0)

        controlnet = ControlNetModel(
536
            block_out_channels=(4, 8),
537
538
539
540
541
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
542
            norm_num_groups=1,
543
544
545
546
547
548
549
550
551
552
553
554
555
        )
        controlnet.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
556
            block_out_channels=[4, 8],
557
558
559
560
561
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
562
            norm_num_groups=2,
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
590
            "image_encoder": None,
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
615
            "output_type": "np",
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
            "image": images,
        }

        return inputs

    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(
            **inputs,
            control_guidance_start=[0.1],
            control_guidance_end=[0.2],
        )[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass


684
685
@slow
@require_torch_gpu
686
class ControlNetPipelineSlowTests(unittest.TestCase):
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

707
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
708
709
710
711
712
713
714
715
716

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy"
        )

717
        assert np.abs(expected_image - image).max() < 9e-2
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

    def test_depth(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Stormtrooper's lecture"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
        )

734
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
735
736
737
738
739
740
741
742
743

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy"
        )

744
        assert np.abs(expected_image - image).max() < 8e-1
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

    def test_hed(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "oil painting of handsome old man, masterpiece"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png"
        )

761
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
762
763
764
765
766
767
768
769
770

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy"
        )

771
        assert np.abs(expected_image - image).max() < 8e-2
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787

    def test_mlsd(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "room"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png"
        )

788
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
789
790
791
792
793
794
795
796
797

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy"
        )

798
        assert np.abs(expected_image - image).max() < 5e-2
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

    def test_normal(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "cute toy"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png"
        )

815
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
816
817
818
819
820
821
822
823
824

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy"
        )

825
        assert np.abs(expected_image - image).max() < 5e-2
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

    def test_openpose(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Chef in the kitchen"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

842
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
843
844
845
846
847
848
849
850
851

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy"
        )

852
        assert np.abs(expected_image - image).max() < 8e-2
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

    def test_scribble(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "bag"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png"
        )

869
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
870
871
872
873
874
875
876
877
878

        image = output.images[0]

        assert image.shape == (640, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy"
        )

879
        assert np.abs(expected_image - image).max() < 8e-2
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

    def test_seg(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

896
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
897
898
899
900
901
902
903
904
905

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy"
        )

906
        assert np.abs(expected_image - image).max() < 8e-2
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

    def test_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

        _ = pipe(
            prompt,
            image,
            num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 4 * 10**9
937

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    def test_canny_guess_mode(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    def test_canny_guess_mode_euler(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Dhruv Nair's avatar
Dhruv Nair committed
1003
    @require_python39_or_higher
1004
    @require_torch_2
1005
1006
1007
1008
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
1009
    def test_stable_diffusion_compile(self):
1010
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    def test_v11_shuffle_global_pool_conditions(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "New York"
        image = load_image(
            "https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=7.0,
        )

        image = output.images[0]
        assert image.shape == (512, 640, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1043
1044
    def test_load_local(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
1045
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1046
1047
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
1048
1049
        pipe.unet.set_default_attn_processor()
        pipe.enable_model_cpu_offload()
1050
1051
1052
1053

        controlnet = ControlNetModel.from_single_file(
            "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
        )
1054
        pipe_sf = StableDiffusionControlNetPipeline.from_single_file(
1055
1056
1057
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
            safety_checker=None,
            controlnet=controlnet,
1058
            scheduler_type="pndm",
1059
        )
1060
1061
        pipe_sf.unet.set_default_attn_processor()
        pipe_sf.enable_model_cpu_offload()
1062

1063
1064
1065
1066
        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))
        prompt = "bird"
1067

1068
1069
1070
1071
1072
1073
1074
1075
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            prompt,
            image=control_image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
        ).images[0]
1076

1077
1078
1079
1080
1081
1082
1083
1084
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_sf = pipe_sf(
            prompt,
            image=control_image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
        ).images[0]
1085

1086
1087
        max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten())
        assert max_diff < 1e-3
1088

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    def test_single_file_component_configs(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16")
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", variant="fp16", safety_checker=None, controlnet=controlnet
        )

        controlnet_single_file = ControlNetModel.from_single_file(
            "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
        )
        single_file_pipe = StableDiffusionControlNetPipeline.from_single_file(
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
            safety_checker=None,
            controlnet=controlnet_single_file,
            scheduler_type="pndm",
        )

        PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "architectures", "_use_default_values"]
        for param_name, param_value in single_file_pipe.controlnet.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
1109
1110
1111
1112
1113
1114
1115

            # This parameter doesn't appear to be loaded from the config.
            # So when it is registered to config, it remains a tuple as this is the default in the class definition
            # from_pretrained, does load from config and converts to a list when registering to config
            if param_name == "conditioning_embedding_out_channels" and isinstance(param_value, tuple):
                param_value = list(param_value)

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
            assert (
                pipe.controlnet.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.unet.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.unet.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.vae.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.vae.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161

@slow
@require_torch_gpu
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_pose_and_canny(self):
        controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
        controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny]
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird and Chef"
        image_canny = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )
        image_pose = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

1162
        output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3)
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy"
        )

        assert np.abs(expected_image - image).max() < 5e-2