test_controlnet.py 40.3 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
import tempfile
18
import traceback
19
20
21
22
23
24
25
26
27
28
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
29
    EulerDiscreteScheduler,
30
    LCMScheduler,
31
32
33
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
)
34
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
35
from diffusers.utils.import_utils import is_xformers_available
36
from diffusers.utils.testing_utils import (
37
38
39
40
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_max_memory_allocated,
    backend_reset_peak_memory_stats,
41
    enable_full_determinism,
42
    get_python_version,
43
    is_torch_compile,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
    load_image,
    load_numpy,
46
    require_torch_2,
47
    require_torch_accelerator,
48
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
49
50
    slow,
    torch_device,
51
)
Dhruv Nair's avatar
Dhruv Nair committed
52
from diffusers.utils.torch_utils import randn_tensor
53

54
from ..pipeline_params import (
55
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
56
    TEXT_TO_IMAGE_BATCH_PARAMS,
57
    TEXT_TO_IMAGE_IMAGE_PARAMS,
58
59
    TEXT_TO_IMAGE_PARAMS,
)
60
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
61
    IPAdapterTesterMixin,
62
63
64
65
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
66
67


68
enable_full_determinism()
69
70


71
72
73
74
75
76
77
78
79
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
80
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        )
        pipe.to("cuda")
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        pipe.controlnet.to(memory_format=torch.channels_last)
        pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
Dhruv Nair's avatar
Dhruv Nair committed
95
        ).resize((512, 512))
96

Dhruv Nair's avatar
Dhruv Nair committed
97
        output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np")
98
99
        image = output.images[0]

Dhruv Nair's avatar
Dhruv Nair committed
100
        assert image.shape == (512, 512, 3)
101
102
103
104

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
        )
Dhruv Nair's avatar
Dhruv Nair committed
105
        expected_image = np.resize(expected_image, (512, 512, 3))
106
107
108
109
110
111
112
113
114
115
116

        assert np.abs(expected_image - image).max() < 1.0

    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


117
class ControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
118
119
120
121
122
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
123
):
124
125
126
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
127
128
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
129

130
    def get_dummy_components(self, time_cond_proj_dim=None):
131
132
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
133
            block_out_channels=(4, 8),
134
135
136
137
138
139
140
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
141
            norm_num_groups=1,
142
            time_cond_proj_dim=time_cond_proj_dim,
143
144
145
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
146
            block_out_channels=(4, 8),
147
148
149
150
151
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
152
            norm_num_groups=1,
153
154
155
156
157
158
159
160
161
162
163
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
164
            block_out_channels=[4, 8],
165
166
167
168
169
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
170
            norm_num_groups=2,
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
196
            "image_encoder": None,
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
218
            "output_type": "np",
219
220
221
222
223
224
225
226
            "image": image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

227
    def test_ip_adapter(self):
228
229
230
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5234, 0.3333, 0.1745, 0.7605, 0.6224, 0.4637, 0.6989, 0.7526, 0.4665])
231
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
232

233
234
235
236
237
238
239
240
241
242
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    def test_controlnet_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def test_controlnet_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

289

290
class StableDiffusionMultiControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
291
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
292
):
293
294
295
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
296
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
297

Marc Sun's avatar
Marc Sun committed
298
299
    supports_dduf = False

300
301
302
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
303
            block_out_channels=(4, 8),
304
305
306
307
308
309
310
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
311
            norm_num_groups=1,
312
313
        )
        torch.manual_seed(0)
314
315
316

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
317
                torch.nn.init.normal_(m.weight)
318
319
                m.bias.data.fill_(1.0)

320
        controlnet1 = ControlNetModel(
321
            block_out_channels=(4, 8),
322
323
324
325
326
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
327
            norm_num_groups=1,
328
        )
329
330
        controlnet1.controlnet_down_blocks.apply(init_weights)

331
332
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
333
            block_out_channels=(4, 8),
334
335
336
337
338
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
339
            norm_num_groups=1,
340
        )
341
342
        controlnet2.controlnet_down_blocks.apply(init_weights)

343
344
345
346
347
348
349
350
351
352
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
353
            block_out_channels=[4, 8],
354
355
356
357
358
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
359
            norm_num_groups=2,
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
387
            "image_encoder": None,
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
417
            "output_type": "np",
418
419
420
421
422
            "image": images,
        }

        return inputs

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

456
457
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
458
459
460
461
462
463
464
465
466
467
468

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

469
    def test_ip_adapter(self):
470
471
472
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.2422, 0.3425, 0.4048, 0.5351, 0.3503, 0.2419, 0.4645, 0.4570, 0.3804])
473
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
474

475
476
477
478
479
480
481
482
483
484
485
486
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def test_inference_multiple_prompt_input(self):
        device = "cpu"

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"]]
        output = sd_pipe(**inputs)
        image = output.images

        assert image.shape == (2, 64, 64, 3)

        image_1, image_2 = image
        # make sure that the outputs are different
        assert np.sum(np.abs(image_1 - image_2)) > 1e-3

        # multiple prompts, single image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        output_1 = sd_pipe(**inputs)

        assert np.abs(image - output_1.images).max() < 1e-3

514
515
516
517
518
519
520
521
522
        # multiple prompts, multiple image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"], inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"], inputs["image"], inputs["image"]]
        output_2 = sd_pipe(**inputs)
        image = output_2.images

        assert image.shape == (4, 64, 64, 3)

523
524

class StableDiffusionMultiControlNetOneModelPipelineFastTests(
Aryan's avatar
Aryan committed
525
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
526
527
528
529
530
531
):
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

Marc Sun's avatar
Marc Sun committed
532
533
    supports_dduf = False

534
535
536
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
537
            block_out_channels=(4, 8),
538
539
540
541
542
543
544
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
545
            norm_num_groups=1,
546
547
548
549
550
        )
        torch.manual_seed(0)

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
551
                torch.nn.init.normal_(m.weight)
552
553
554
                m.bias.data.fill_(1.0)

        controlnet = ControlNetModel(
555
            block_out_channels=(4, 8),
556
557
558
559
560
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
561
            norm_num_groups=1,
562
563
564
565
566
567
568
569
570
571
572
573
574
        )
        controlnet.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
575
            block_out_channels=[4, 8],
576
577
578
579
580
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
581
            norm_num_groups=2,
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
609
            "image_encoder": None,
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
634
            "output_type": "np",
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
            "image": images,
        }

        return inputs

    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(
            **inputs,
            control_guidance_start=[0.1],
            control_guidance_end=[0.2],
        )[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
679
680
681
682
683
684
685
686
687
688
689

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

690
    def test_ip_adapter(self):
691
692
693
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5264, 0.3203, 0.1602, 0.8235, 0.6332, 0.4593, 0.7226, 0.7777, 0.4780])
694
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
695

696
697
698
699
700
701
702
703
704
705
706
707
708
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass


709
@slow
710
@require_torch_accelerator
711
class ControlNetPipelineSlowTests(unittest.TestCase):
712
713
714
    def setUp(self):
        super().setUp()
        gc.collect()
715
        backend_empty_cache(torch_device)
716

717
718
719
    def tearDown(self):
        super().tearDown()
        gc.collect()
720
        backend_empty_cache(torch_device)
721
722
723
724
725

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
726
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
727
        )
728
        pipe.enable_model_cpu_offload(device=torch_device)
729
730
731
732
733
734
735
736
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

737
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
738
739
740
741
742
743
744
745
746

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy"
        )

747
        assert np.abs(expected_image - image).max() < 9e-2
748
749
750
751
752

    def test_depth(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
753
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
754
        )
755
        pipe.enable_model_cpu_offload(device=torch_device)
756
757
758
759
760
761
762
763
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Stormtrooper's lecture"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
        )

764
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
765
766
767
768
769
770
771
772
773

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy"
        )

774
        assert np.abs(expected_image - image).max() < 8e-1
775
776
777
778
779

    def test_hed(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
780
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
781
        )
782
        pipe.enable_model_cpu_offload(device=torch_device)
783
784
785
786
787
788
789
790
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "oil painting of handsome old man, masterpiece"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png"
        )

791
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
792
793
794
795
796
797
798
799
800

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy"
        )

801
        assert np.abs(expected_image - image).max() < 8e-2
802
803
804
805
806

    def test_mlsd(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
807
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
808
        )
809
        pipe.enable_model_cpu_offload(device=torch_device)
810
811
812
813
814
815
816
817
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "room"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png"
        )

818
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
819
820
821
822
823
824
825
826
827

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy"
        )

828
        assert np.abs(expected_image - image).max() < 5e-2
829
830
831
832
833

    def test_normal(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
834
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
835
        )
836
        pipe.enable_model_cpu_offload(device=torch_device)
837
838
839
840
841
842
843
844
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "cute toy"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png"
        )

845
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
846
847
848
849
850
851
852
853
854

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy"
        )

855
        assert np.abs(expected_image - image).max() < 5e-2
856
857
858
859
860

    def test_openpose(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
861
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
862
        )
863
        pipe.enable_model_cpu_offload(device=torch_device)
864
865
866
867
868
869
870
871
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Chef in the kitchen"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

872
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
873
874
875
876
877
878
879
880
881

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy"
        )

882
        assert np.abs(expected_image - image).max() < 8e-2
883
884
885
886
887

    def test_scribble(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
888
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
889
        )
890
        pipe.enable_model_cpu_offload(device=torch_device)
891
892
893
894
895
896
897
898
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "bag"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png"
        )

899
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
900
901
902
903
904
905
906
907
908

        image = output.images[0]

        assert image.shape == (640, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy"
        )

909
        assert np.abs(expected_image - image).max() < 8e-2
910
911
912
913
914

    def test_seg(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
915
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
916
        )
917
        pipe.enable_model_cpu_offload(device=torch_device)
918
919
920
921
922
923
924
925
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

926
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
927
928
929
930
931
932
933
934
935

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy"
        )

936
        assert np.abs(expected_image - image).max() < 8e-2
937
938

    def test_sequential_cpu_offloading(self):
939
940
941
        backend_empty_cache(torch_device)
        backend_reset_max_memory_allocated(torch_device)
        backend_reset_peak_memory_stats(torch_device)
942
943
944
945

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
946
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
947
948
949
        )
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
950
        pipe.enable_sequential_cpu_offload(device=torch_device)
951
952
953
954
955
956
957
958
959
960
961
962
963

        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

        _ = pipe(
            prompt,
            image,
            num_inference_steps=2,
            output_type="np",
        )

964
        mem_bytes = backend_max_memory_allocated(torch_device)
965
966
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 4 * 10**9
967

968
969
970
971
    def test_canny_guess_mode(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
972
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
973
        )
974
        pipe.enable_model_cpu_offload(device=torch_device)
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1000
1001
1002
1003
    def test_canny_guess_mode_euler(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1004
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
1005
1006
        )
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
1007
        pipe.enable_model_cpu_offload(device=torch_device)
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1033
    @is_torch_compile
1034
    @require_torch_2
1035
1036
1037
1038
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
1039
    def test_stable_diffusion_compile(self):
1040
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)
1041

1042
1043
1044
1045
    def test_v11_shuffle_global_pool_conditions(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1046
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
1047
        )
1048
        pipe.enable_model_cpu_offload(device=torch_device)
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "New York"
        image = load_image(
            "https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=7.0,
        )

        image = output.images[0]
        assert image.shape == (512, 640, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1073
1074

@slow
1075
@require_torch_accelerator
1076
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
1077
1078
1079
    def setUp(self):
        super().setUp()
        gc.collect()
1080
        backend_empty_cache(torch_device)
1081

1082
1083
1084
    def tearDown(self):
        super().tearDown()
        gc.collect()
1085
        backend_empty_cache(torch_device)
1086
1087
1088
1089
1090
1091

    def test_pose_and_canny(self):
        controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
        controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1092
1093
1094
            "stable-diffusion-v1-5/stable-diffusion-v1-5",
            safety_checker=None,
            controlnet=[controlnet_pose, controlnet_canny],
1095
        )
1096
        pipe.enable_model_cpu_offload(device=torch_device)
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird and Chef"
        image_canny = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )
        image_pose = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

1108
        output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3)
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy"
        )

        assert np.abs(expected_image - image).max() < 5e-2