test_modeling_utils.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
import random
import tempfile
import unittest
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
21
import os
from distutils.util import strtobool
22
23
24

import torch

Patrick von Platen's avatar
improve  
Patrick von Platen committed
25
from diffusers import GaussianDDPMScheduler, UNetModel
26
27
from diffusers.pipeline_utils import DiffusionPipeline
from models.vision.ddpm.modeling_ddpm import DDPM
Patrick von Platen's avatar
Patrick von Platen committed
28
from models.vision.ddim.modeling_ddim import DDIM
29
30
31


global_rng = random.Random()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
32
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
33
torch.backends.cuda.matmul.allow_tf32 = False
Patrick von Platen's avatar
Patrick von Platen committed
34
35


Patrick von Platen's avatar
improve  
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


class ModelTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
82
83
    @property
    def dummy_input(self):
Patrick von Platen's avatar
up  
Patrick von Platen committed
84
        batch_size = 4
Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
91
92
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes)
        time_step = torch.tensor([10])

        return (noise, time_step)

93
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
94
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
95
96
97
98
99

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)

Patrick von Platen's avatar
Patrick von Platen committed
100
        dummy_input = self.dummy_input
101

Patrick von Platen's avatar
Patrick von Platen committed
102
103
        image = model(*dummy_input)
        new_image = new_model(*dummy_input)
104
105

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
110
111
112

    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")

        image = model(*self.dummy_input)

        assert image is not None, "Make sure output is not None"
113
114
115
116


class SamplerTesterMixin(unittest.TestCase):

Patrick von Platen's avatar
improve  
Patrick von Platen committed
117
118
    @slow
    def test_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
119
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
120
121
122
123
124
125
126
127
128
129
130

        # 1. Load models
        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
131
132
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
133
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
134
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
135
136
137
138
139
140
141

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
142
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
143
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
144
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        # Note: The better test is to simply check with the following lines of code that the image is sensible
        # import PIL
        # import numpy as np
        # image_processed = image.cpu().permute(0, 2, 3, 1)
        # image_processed = (image_processed + 1.0) * 127.5
        # image_processed = image_processed.numpy().astype(np.uint8)
        # image_pil = PIL.Image.fromarray(image_processed[0])
        # image_pil.save("test.png")

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
164
165
        expected_slice = torch.tensor([-0.1636, -0.1765, -0.1968, -0.1338, -0.1432, -0.1622, -0.1793, -0.2001, -0.2280])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
Patrick von Platen's avatar
improve  
Patrick von Platen committed
166
167
168

    def test_sample_fast(self):
        # 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
169
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
170
171
172
173
174
175
176
177
178
179

        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
180
181
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
182
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
183
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
184
185
186
187
188
189
190

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
191
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
192
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
193
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
194
195
196
197
198
199
200
201
202
203

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
204
        expected_slice = torch.tensor([-0.0304, -0.1895, -0.2436, -0.9837, -0.5422, 0.1931, -0.8175, 0.0862, -0.7783])
Patrick von Platen's avatar
Patrick von Platen committed
205
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
206
207
208


class PipelineTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
209

210
211
212
213
214
215
216
217
218
219
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
        schedular = GaussianDDPMScheduler(timesteps=10)

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
220
221

        generator = torch.manual_seed(0)
222

patil-suraj's avatar
patil-suraj committed
223
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
224
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
225
        new_image = new_ddpm(generator=generator)
226
227
228
229
230
231
232
233
234
235
236
237
238

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
239
        generator = torch.manual_seed(0)
240

patil-suraj's avatar
patil-suraj committed
241
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
242
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
243
        new_image = ddpm_from_hub(generator=generator)
244
245

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_id)
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        ddim = DDIM.from_pretrained(model_id)
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([-0.7688, -0.7690, -0.7597, -0.7660, -0.7713, -0.7531, -0.7009, -0.7098, -0.7350])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2